首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21665篇
  免费   1999篇
  国内免费   1671篇
电工技术   332篇
综合类   1655篇
化学工业   7252篇
金属工艺   1770篇
机械仪表   768篇
建筑科学   354篇
矿业工程   394篇
能源动力   206篇
轻工业   2039篇
水利工程   47篇
石油天然气   578篇
武器工业   231篇
无线电   3954篇
一般工业技术   3721篇
冶金工业   1122篇
原子能技术   216篇
自动化技术   696篇
  2024年   69篇
  2023年   303篇
  2022年   539篇
  2021年   770篇
  2020年   609篇
  2019年   604篇
  2018年   563篇
  2017年   721篇
  2016年   684篇
  2015年   760篇
  2014年   1074篇
  2013年   1267篇
  2012年   1489篇
  2011年   1489篇
  2010年   1030篇
  2009年   1251篇
  2008年   1087篇
  2007年   1345篇
  2006年   1427篇
  2005年   1256篇
  2004年   1061篇
  2003年   844篇
  2002年   803篇
  2001年   643篇
  2000年   578篇
  1999年   514篇
  1998年   383篇
  1997年   320篇
  1996年   299篇
  1995年   258篇
  1994年   235篇
  1993年   215篇
  1992年   183篇
  1991年   157篇
  1990年   121篇
  1989年   79篇
  1988年   58篇
  1987年   39篇
  1986年   29篇
  1985年   38篇
  1984年   28篇
  1983年   25篇
  1982年   26篇
  1981年   7篇
  1980年   9篇
  1979年   9篇
  1977年   7篇
  1976年   5篇
  1975年   8篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Noncentrosymmetric (NCS) tetrel pnictides have recently generated interest as nonlinear optical (NLO) materials due to their second harmonic generation (SHG) activity and large laser damage threshold (LDT). Herein nonmetal-rich silicon phosphides RuSi4P4 and IrSi3P3 are synthesized and characterized. Their crystal structures are reinvestigated using single crystal X-ray diffraction and 29Si and 31P magic angle spinning NMR. In agreement with previous report RuSi4P4 crystallizes in NCS space group P1, while IrSi3P3 is found to crystallize in NCS space group Cm, in contrast with the previously reported space group C2. A combination of DFT calculations and diffuse reflectance measurements reveals RuSi4P4 and IrSi3P3 to be wide bandgap (Eg) semiconductors, Eg = 1.9 and 1.8 eV, respectively. RuSi4P4 and IrSi3P3 outperform the current state-of-the-art infrared SHG material, AgGaS2, both in SHG activity and laser inducer damage threshold. Due to the combination of high thermal stabilities (up to 1373 K), wide bandgaps (≈2 eV), NCS crystal structures, strong SHG responses, and large LDT values, RuSi4P4 and IrSi3P3 are promising candidates for longer wavelength NLO materials.  相似文献   
2.
Poly(l ‐lactic acid) (PLLA) is a biodegradable and biocompatible thermoplastic polyester produced from renewable sources, widely used for biomedical devices, in food packaging and in agriculture. It is a semicrystalline polymer, and as such its properties are strongly affected by the developed semicrystalline morphology. As a function of the crystallization temperature, PLLA can form different crystal modifications, namely α′‐crystals below about 120 °C and α‐crystals at higher temperatures. The α′ modification is therefore of special importance as it may be the preferred polymorph developing at processing‐relevant conditions. It is a metastable modification which typically transforms into the more stable α‐crystals on annealing at elevated temperature. The structure, kinetics of formation and thermodynamics of α′‐ and α‐crystals of PLLA are reviewed in this contribution, together with the effect of α′‐/α‐crystal polymorphism on the properties of PLLA. © 2018 Society of Chemical Industry  相似文献   
3.
The conversion of food industry by-products to compounds with high added value is nowadays a significant topic, for social, environmental, and economic reasons. In this paper, calcium phosphate-based materials were obtained from black scabbardfish (Aphanopus carbo) bones and grey triggerfish (Balistes capriscus) skin, which are two of the most abundant fish by-products of Madeira Island. Different calcination temperatures between 400 and 1000°C were employed. Materials obtained from calcination of bones of black scabbard fish were composed by homogeneous mixtures of hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and β-tricalcium phosphate (β-Ca3(PO4)2, β-TCP). Because of the high biocompatibility of HAp and the good resorbability of β-TCP, these natural biphasic materials could be very relevant in the field of biomaterials, as bone grafts. The ratio between HAp and β-TCP in the biphasic compound was dependent on the calcination temperature. Differently, the material obtained from skin of grey triggerfish contained HAp as the main phase, together with small amounts of other mineral phases, such as halite and rhenanite, which are known to enhance osteogenesis when used as bone substitutes. In both cases, the increase of calcination temperature led to an increase in the particles size with a consequent decrease in their specific surface area. These results demonstrate that from the fish by-products of the most consumed fishes in Madeira Island it is possible to obtain bioceramic materials with tunable composition and particle morphology, which could be promising materials for the biomedical field.  相似文献   
4.
The effects of particle size and carbon dioxide concentration on chemical conversion in engineered spherical particles undergoing calcium oxide looping are investigated. Particles are thermochemically cycled in a furnace under different carbon dioxide concentrations. Changes in composition due to chemical reactions are measured using thermogravimetric analysis. Gas composition at the furnace exit is evaluated with mass spectroscopy. A numerical model of thermal transport phenomena developed previously is adapted to match the physical system investigated in the present study. The model is used to elucidate effects of reacting medium characteristics on particle temperature and reaction extent. Experimental and numerical results show that (1) an increase in particle size results in a decrease in carbonation extent, and (2) the carbonation step consists of fast and slow reaction regimes. The reaction rates in the fast and slow carbonation regimes increase with increasing carbon dioxide concentration. The effect of carbon dioxide concentration and the distinction between the fast and slow regimes become more pronounced with increasing particle size.  相似文献   
5.
The calcium pump (sarco/endoplasmic reticulum Ca2+-ATPase, SERCA) plays a major role in calcium homeostasis in muscle cells by clearing cytosolic Ca2+ during muscle relaxation. Active Ca2+ transport by SERCA involves the structural transition from a low-Ca2+ affinity E2 state toward a high-Ca2+ affinity E1 state of the pump. This structural transition is accompanied by the countertransport of protons to stabilize the negative charge and maintain the structural integrity of the transport sites and partially compensate for the positive charges of the two Ca2+ ions passing through the membrane. X-ray crystallography studies have suggested that a hydrated pore located at the C-terminal domain of SERCA serves as a conduit for proton countertransport, but the existence and function of this pathway have not yet been fully characterized. We used atomistic simulations to demonstrate that in the protonated E2 state and the absence of initially bound water molecules, the C-terminal pore becomes hydrated in the nanosecond timescale. Hydration of the C-terminal pore is accompanied by the formation of water wires that connect the transport sites with the cytosol. Water wires are known as ubiquitous proton-transport devices in biological systems, thus supporting the notion that the C-terminal domain serves as a conduit for proton release. Additional simulations showed that the release of a single proton from the transport sites induces bending of transmembrane helix M5 and the interaction between residues Arg762 and Ser915. These structural changes create a physical barrier against full hydration of the pore and prevent the formation of hydrogen-bonded water wires once proton transport has occurred through this pore. Together, these findings support the notion that the C-terminal proton release pathway is a functional element of SERCA and also provide a mechanistic model for its operation in the catalytic cycle of the pump.  相似文献   
6.
ABSTRACT

In this study, effect of calcium and gypsum on scheelite and fluorite was investigated using sodium oleate as collector. Micro-flotation and contact angle results showed that the adsorption of calcium could inhibit the hydrophobicity of scheelite and fluorite. Moreover, sulfate could enhance the inhibition. FT-IR results showed that calcium could be priori precipitated into calcium oleate and adsorb on mineral surface. The adsorption of calcium could increase the scheelite potential to IEP, while it showed limited effect on fluorite potential. However, the interaction of calcium on scheelite and fluorite in gypsum solution was more complex than that in calcium solution.  相似文献   
7.
目的:探索炎性疾病患者的乳酸林格氏液(Ringer's lactate,RL)液体动力学特征以及炎性生物标记物是否可以作为协变量影响RL分布和排泄。方法:本研究为前瞻性队列研究。选择40例美国麻醉医师分级(ASA)I-II级,腹腔镜下择期胆囊切除术(胆囊炎组,n=20)或者腹腔镜下急诊阑尾切除术(阑尾炎组,n=20)。所有患者麻醉诱导前开始输注RL,按15 mL/kg,35 min内输毕。采用酶联免疫(enzyme-linked immunosorbent assay,ELISA)方法测定血浆炎症(TNF-α,IL-10和CRP)或者内皮损伤生物标记物(syndecan-1,SDC-1);利用血红蛋白(Hb)稀释-时间曲线和尿量,使用Phoenix软件,采用非线性混合效应模型分析计算RL液体动力学参数和协变量的影响。结果:与胆囊炎组相比,阑尾炎组RL从组织间隙到血浆的转运速率常数(k21)显著降低(14×10-3min-1 versus 35×10-3min-1;P=0.012)。阑尾炎组C反应蛋白(CRP)升高[中位数38.1(1.8-143.6) μg/mL versus 1.3(0.1-159.0) μg/mL;P<0.001];与清醒状态相比,麻醉期间(输液开始后30~45 min),液体从中央室中到外周室的转运速率常数(k12)显著增加(57×10-3min-1 versus 32×10-3min-1;P<0.01)。清除速率常数(k10)降低90%(0.6×10-3min-1 versus 5.3×10-3min-1;P<0.001)。无论在清醒状态还是麻醉状态下低血压均能降低液体清除;炎症或者内膜损伤的生物标记物不能作为显著影响RL液体动力学参数的协变量。结论:阑尾炎或者胆囊炎患者术前输入液体后“炎症反应的生物标记物”不是RL的液体动力学的协变量,但是两组患者中,全身麻醉期间输入液体的清除率下降。  相似文献   
8.
A new technique of EDM coring of single crystal silicon carbide (SiC) ingot was proposed in this paper. Currently single crystal SiC devices are still of high cost due to the high cost of bulk crystal SiC material and the difficulty in the fabrication process of SiC. In the manufacturing process of SiC ingot/wafer, localized cracks or defects occasionally occur due to thermal or mechanical causes resulted from fabrication processes which may waste the whole piece of material. To save the part of ingot without defects and maximize the material utilization, the authors proposed EDM coring method to cut out a no defect ingot from a larger diameter ingot which has localized defects. A special experimental setup was developed for EDM coring of SiC ingot in this study and its feasibility and machining performance were investigated. Meanwhile, in order to improve the machining rate, a novel multi-discharge EDM coring method by electrostatic induction feeding was established, which can realize multiple discharges in single pulse duration. Experimental results make it clear that EDM coring of SiC ingot can be carried out stably using the developed experimental setup. Taking advantage of the newly developed multi-discharge EDM method, both the machining speed and surface integrity can be improved.  相似文献   
9.
To realize ultimately efficient signal processing, it is necessary to replace electrical signal processing circuits with optical ones. The optical micro-resonator, which localizes light at a certain spot, is an essential component in optical signal processing. Single-crystal calcium fluoride (CaF2) is the most suitable material for a highly efficient optical micro-resonator. The CaF2 resonator can only be manufactured by ultra-precision machining processes, because its crystal anisotropy does not allow the application of chemical etching. However, the optical micro-resonator's performance depends definitely on the surface integrity.This study investigated the relationship between surface quality after ultra-precision machining and crystal anisotropy. Firstly, crack initiation was investigated on the (1 0 0), (1 1 0), and (1 1 1) planes using the micro-Vickers hardness test. Secondly, brittle-ductile transition was investigated by orthogonal cutting tests. Finally, cutting performance of cylindrical turning was evaluated, which could be a suitable method for manufacturing the CaF2 resonator. The most difficult point in cylindrical turning of CaF2 is that the crystalline plane and cutting direction vary continuously. In order to manufacture the CaF2 optical micro-resonator more efficiently, analysis was conducted on crack initiation and surface quality of all crystallographic orientations from the perspective of slip system and cleavage.  相似文献   
10.
Cryogels based on poly(vinyl alcohol) [PVA] and three types of bioinsertions such as scleroglucan, cellulose microfibers, and zein, respectively, have been prepared using capacity of PVA to crosslink by repeated freezing–thawing cycles. The effect of the incorporation of biopolymers on the properties of PVA cryogel has been studied by using several techniques such as: scanning electron microscopy, differential scanning calorimetry, and Fourier transform infrared studies. The obtained biobased cryogel membranes were subjected to sorption and to diffusion experiments using Crystal Violet (CV), a dye commonly used in the textile industry and in medicine. Image analysis with CIELAB system was used both to monitor the cryogels loading with CV and to gain insight in the dye state into the gel, in correlation with the bioinsertion type and gels morphology. Dye diffusion but also sorption capacity of the cryogels was found to be closely related to the type of biopolymer. In this article the equilibrium (sorption isotherms) and transport properties (diffusion and permeability coefficients) of CV, in/through physical cross‐linked PVA hydrogel membranes with bioinsertions has been reported. The highest efficiency for the CV removal from aqueous solutions was obtained for the PVA/Scl cryogels. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41838.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号