首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20401篇
  免费   2342篇
  国内免费   588篇
电工技术   634篇
综合类   540篇
化学工业   5648篇
金属工艺   776篇
机械仪表   802篇
建筑科学   382篇
矿业工程   109篇
能源动力   3533篇
轻工业   1758篇
水利工程   62篇
石油天然气   228篇
武器工业   29篇
无线电   3528篇
一般工业技术   3681篇
冶金工业   410篇
原子能技术   446篇
自动化技术   765篇
  2024年   61篇
  2023年   677篇
  2022年   1531篇
  2021年   1796篇
  2020年   952篇
  2019年   811篇
  2018年   773篇
  2017年   911篇
  2016年   934篇
  2015年   945篇
  2014年   1293篇
  2013年   1279篇
  2012年   1285篇
  2011年   1742篇
  2010年   1175篇
  2009年   1093篇
  2008年   908篇
  2007年   932篇
  2006年   761篇
  2005年   567篇
  2004年   436篇
  2003年   407篇
  2002年   358篇
  2001年   300篇
  2000年   225篇
  1999年   150篇
  1998年   209篇
  1997年   141篇
  1996年   103篇
  1995年   67篇
  1994年   68篇
  1993年   52篇
  1992年   55篇
  1991年   54篇
  1990年   36篇
  1989年   39篇
  1988年   25篇
  1987年   25篇
  1986年   21篇
  1985年   27篇
  1984年   17篇
  1983年   18篇
  1982年   8篇
  1981年   7篇
  1980年   13篇
  1979年   7篇
  1978年   6篇
  1977年   6篇
  1975年   5篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Here we report some recent biophysical issues on the preparation of solute-filled lipid vesicles and their relevance to the construction of “synthetic cells.” First, we introduce the “semi-synthetic minimal cells” as the liposome-based cell-like systems, which contain a minimal number of biomolecules required to display simple and complex biological functions. Next, we focus on recent aspects related to the construction of synthetic cells. Emphasis is given to the interplay between the methods of synthetic cell preparation and the physics of solute encapsulation. We briefly introduce the notion of structural and compositional “diversity” in synthetic cell populations.  相似文献   
2.
In this study we analyze the optoelectronic properties and structural characterization of hydrogenated polymorphous silicon thin films as a function of the deposition parameters. The films were grown by plasma enhanced chemical vapor deposition (PECVD) using a gas mixture of argon (Ar), hydrogen (H2) and dichlorosilane (SiH2Cl2). High-resolution transmission electron microscopy images and Raman measurements confirmed the existence of very different internal structures (crystalline fractions from 12% to 54%) depending on the growth parameters. Variations of as much as one order of magnitude were observed in both the photoconductivity and effective absorption coefficient between the samples deposited with different dichlorosilane/hydrogen flow rate ratios. The optical and transport properties of these films depend strongly on their structural characteristics, in particular the average size and densities of silicon nanocrystals embedded in the amorphous silicon matrix. From these results we propose an intrinsic polymorphous silicon bandgap grading thin film to be applied in a p–i–n junction solar cell structure. The different parts of the solar cell structure were proposed based on the experimental optoelectronic properties of the pm-Si:H thin films studied in this work.  相似文献   
3.
We report on conductivity and optical property of three different types of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) films [pristine PH1000 film (PH1000-p), with 5 wt.% ethylene glycol additive (PH1000-EG) and with sulfuric acid post-treatment (PH1000-SA)] before and after polyethylenimine (PEI) treatment. The PEI is found to decrease the conductivity of all the PEDOT:PSS films. The processing solvent of 2-methoxyethanol is found to significantly enhance the conductivity of PH1000-p from 1.1 up to 744 S/cm while the processing solvent of isopropanol or water does not change the conductivity of PH1000-p much. As for the optical properties, the PEI treatment slightly changes the transmittance and reflectance of PH1000-p and PH1000-EG films, while the PEI leads to an substantial increase of the absorptance in the spectral region of 400–1100 nm of the PH1000-SA films. Though the optical property and conductivity of the three different types of PEDOT:PSS films vary with the PEI treatment, the treated PEDOT:PSS films exhibit similar low work function. We demonstrate solar cells with a simple device structure of glass/low-WF PEDOT:PSS/P3HT:ICBA/high-WF PEDOT:PSS cells that exhibit good performance with open-circuit voltage of 0.82 V and fill factor up to 0.62 under 100 mW/cm2 white light illumination.  相似文献   
4.
The light scattering, harvesting and adsorption effects in dye-sensitized solar cells (DSSCs) are studied by preparation of coated carbon nanotubes (CNTs) with TiO2 and Zr-doped TiO2 nanoparticles in the forms of mono- and double-layer cells. X-ray diffraction (XRD) analysis reveals that the phase composition of Zr-doped TiO2 electrode is a mixture of anatase and rutile phases with major rutile content, whereas it is the same mixture with major anatase content for coated CNTs with TiO2. Furthermore, the average crystallite size of Zr-doped TiO2 electrode is slightly decreased with Zr introduction. Field emission scanning electron microscope (FE-SEM) images show that the porosity of Zr-doped TiO2 electrodes is higher than that of undoped electrode, enhancing dye adsorption. UV–visible spectroscopy analysis reveals that the absorption onset of Zr-doped TiO2 electrodes is slightly shifted to longer wavelength (the red-shift) in comparison with that of undoped TiO2 electrode. Moreover, the band gap energy of TiO2 nanoparticles is decreased by Zr introduction, enhancing light absorption. It is found that electron injection of monolayer TiO2 electrode is improved by introduction of 0.025 mol% Zr, resulted in enhancement of its power conversion efficiency (PCE) up to 6.81% compared with 6.17% for pure TiO2 electrode. Moreover, electron transport and light scattering are enhanced by incorporation of 0.025 wt% coated CNTs with TiO2 in the over-layer of double layer electrode. Therefore, double layer solar cell composed of 0.025 mol% Zr-doped TiO2 nanoparticles as the under-layer and mixtures of these nanoparticles and 0.025 wt% coated CNTs with TiO2 as the over-layer shows the highest PCE of 8.19%.  相似文献   
5.
The morphology of the photoactive layer critically affects the performance of the bulk heterojunction polymer solar cells (PSCs). To control the morphology, we introduced a hydrophobic fluoropolymer polyvinylidene fluoride (PVDF) as nonvolatile additive into the P3HT:PCBM active layer. The effect of PVDF on the surface and the bulk morphology were investigated by atomic force microscope and transmission electron microscopy, respectively. Through the repulsive interactions between the hydrophilic PCBM and the hydrophobic PVDF, much more uniform phase separation with good P3HT crystallinity is formed within the active layer, resulting enhanced light harvesting and improved photovoltaic performance in conventional devices. The PCE of the conventional device can improve from 2.40% to 3.07% with PVDF additive. The PVDF distribution within the active layer was investigated by secondary ion mass spectroscopy, confirming a bottom distribution of PVDF. Therefore, inverted device structure was designed, and the PCE can improve from 2.81% to 3.45% with PVDF additive. Our findings suggest that PVDF is a promising nonvolatile processing additive for high performance polymer solar cells.  相似文献   
6.
This work investigates the effect of the addition of small amounts of Ru (0.5‐1 wt%) to carbon supported Co (10 wt%) catalysts towards both NaBH4 and NH3BH3 hydrolysis for H2 production. In the sodium borohydride hydrolysis, the activity of Ru‐Co/carbon catalysts was sensibly higher than the sum of the activities of corresponding monometallic samples, whereas for the ammonia borane hydrolysis, the positive effect of Ru‐Co systems with regard to catalytic activity was less evident. The performances of Ru‐Co bimetallic catalysts correlated with the occurrence of an interaction between Ru and Co species resulting in the formation of smaller ruthenium and cobalt oxide particles with a more homogeneous dispersion on the carbon support. It was proposed that Ru°, formed during the reduction step of the Ru‐Co catalysts, favors the H2 activation, thus enhancing the reduction degree of the cobalt precursor and the number of Co nucleation centers. A subsequent reduction of cobalt and ruthenium species also occurs in the hydride reaction medium, and therefore the state of the catalyst before the catalytic experiment determines the state of the active phase formed in situ. The different relative reactivity of the Ru and Co active species towards the two investigated reactions accounted for the different behavior towards NaBH4 and NH3BH3 hydrolysis.  相似文献   
7.
A fluorene-centered perylene monoimide dimer, PMI-F-PMI with a partly non-coplanar configuration has been developed as a potential non-fullerene acceptor for organic solar cells (OSCs). The optimum power conversion efficiency (PCE) of the OSC based on PMI-F-PMI as acceptor and poly (3-hexyl thiophene) (P3HT) as donor is up to 2.30% after annealing at 150 °C. The PCE of 2.30% is the highest value for the OSCs based on P3HT donor and non-fullerene acceptor lies in that PMI-F-PMI’s lowest unoccupied molecular orbital (LUMO) level around −3.50 eV matches well with the donor P3HT to produce higher open-circuit voltage (Voc) of 0.98 V. Meanwhile, PMI-F-PMI makes remarkable contribution to devices’ light absorption as the maximum EQE (30%) of the devices is at 512 nm, same to the maximum absorption wavelength of PMI-F-PMI. The other favorable characteristics of PMI-F-PMI in bulk heterojunction (BHJ) active layers is proved through the photo current density measures, the relatively balanced electron–hole transport, and the smooth morphology with root mean square (RMS) value of 1.86 nm. For these advantages, PMI-F-PMI overwhelms its sister PMI-F and parent PMI as an acceptor in BHJ solar cells.  相似文献   
8.
目的: 探讨自身免疫性溶血性贫血(AIHA)患者外周血中调节性B细胞(Bregs)的表达及其在该病发病中的意义。方法:选择16例自身免疫性溶血性贫血患者和14例健康志愿者为研究对象,用流式细胞术分析外周血CD19+IL-10+调节性B细胞及CD19+CD24hiCD27+调节性B细胞的表达;ELISA方法检测培养上清液中IL-10的水平。结果:自身免疫性溶血性贫血患者外周血中CD19+IL-10+调节性B细胞、CD19+CD24hiCD27+调节性B细胞的表达分别为(1.27±0.39)%、(9.85±2.18)%,健康志愿者组分别为(2.92±0.71)%、(26.47±4.31)%,两组比较差异有统计学意义(P<0.05);自身免疫性溶血性贫血患者细胞培养上清中IL-10的水平低于健康志愿者组(P<0.05)。结论:自身免疫性溶血性贫血患者外周血中CD19+IL-10+调节性B细胞及CD19+CD24hiCD27+调节性B细胞比例降低,提示调节性B细胞可能参与自身免疫性溶血性贫血的发病过程。  相似文献   
9.
高频结构仿真器(HFSS)是一种微波器件设计软件,该软件界面友好,通过仿真计算减小了调试工作量,使得微波器件的设计变得简单易行。本文利用HFSS对波导魔T进行了仿真分析,得到了该器件的S参数和动、静态场的分布情况,并对该器件进行了优化设计。  相似文献   
10.
The intracellular distribution of the anthracyclinic antibiotic adriamycin in living cultured cells has been investigated by confocal microscopy. In human melanoma cells (M14), adriamycin was localized inside the nuclei. When adriamycin-treated M14 cells were allowed to recover in drug-free medium, a complete efflux of the drug from the nucleus was revealed. In recovered cells, a weakly fluorescent signal was observed in the perinuclear region. When M14 cells were recovered in a medium containing colcemid, a microtubule depolymerizing agent, the drug transport from the nucleus to the cell periphery appeared to be inhibited, suggesting that the microtubule network is strongly involved in drug transport mechanisms. In multidrug-resistant (MDR) cells the intracellular location of adriamycin was shown to be noticeably different from that of the parental wild-type cells. In particular, in resistant human breast carcinoma cells (MCF-7), adriamycin appeared to be exclusively located within the cytoplasm whereas the nuclei were shown to be completely negative. When adriamycin treatment was performed in association with MDR revertants, such as Lonidamine (inhibitor of the energy metabolism) or verapamil (inhibitor of the P-glycoprotein efflux pump), a marked enhancement of the cytoplasmic signal was observed in resistant cells. Under these conditions, adriamycin appeared concentrated in the perinuclear region, but the nuclei were still negative. Confocal microscopy proved to be a very useful method for the study of the intracellular transport of fluorescent substances, such as anthracyclinic antibiotics, and for the investigation of the multidrug resistance phenomenon in tumour cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号