首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7108篇
  免费   749篇
  国内免费   356篇
电工技术   113篇
综合类   397篇
化学工业   2619篇
金属工艺   120篇
机械仪表   217篇
建筑科学   250篇
矿业工程   44篇
能源动力   36篇
轻工业   2229篇
水利工程   33篇
石油天然气   76篇
武器工业   7篇
无线电   368篇
一般工业技术   619篇
冶金工业   141篇
原子能技术   61篇
自动化技术   883篇
  2024年   40篇
  2023年   187篇
  2022年   876篇
  2021年   799篇
  2020年   257篇
  2019年   228篇
  2018年   236篇
  2017年   242篇
  2016年   266篇
  2015年   381篇
  2014年   426篇
  2013年   455篇
  2012年   425篇
  2011年   460篇
  2010年   321篇
  2009年   324篇
  2008年   330篇
  2007年   345篇
  2006年   260篇
  2005年   284篇
  2004年   212篇
  2003年   178篇
  2002年   129篇
  2001年   97篇
  2000年   57篇
  1999年   53篇
  1998年   53篇
  1997年   47篇
  1996年   42篇
  1995年   33篇
  1994年   33篇
  1993年   18篇
  1992年   21篇
  1991年   25篇
  1990年   16篇
  1989年   14篇
  1988年   4篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1981年   3篇
  1980年   4篇
  1977年   1篇
  1975年   2篇
  1973年   2篇
  1965年   3篇
  1964年   1篇
  1963年   1篇
  1960年   1篇
排序方式: 共有8213条查询结果,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite significant progress, their therapeutic application remains debated: the TE construct often fails to completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular attention has been given to the PEMF-mediated activation of the adenosine signaling and their regulation of the inflammatory response as key player in TE approaches. Overall, the application of PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.  相似文献   
2.
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.  相似文献   
3.
4.
Diabetic neuropathy (DN), the most common chronic and progressive complication of diabetes mellitus (DM), strongly affects patients’ quality of life. DN could be present as peripheral, autonomous or, clinically also relevant, uremic neuropathy. The etiopathogenesis of DN is multifactorial, and genetic components play a role both in its occurrence and clinical course. A number of gene polymorphisms in candidate genes have been assessed as susceptibility factors for DN, and most of them are linked to mechanisms such as reactive oxygen species production, neurovascular impairments and modified protein glycosylation, as well as immunomodulation and inflammation. Different epigenomic mechanisms such as DNA methylation, histone modifications and non-coding RNA action have been studied in DN, which also underline the importance of “metabolic memory” in DN appearance and progression. In this review, we summarize most of the relevant data in the field of genetics and epigenomics of DN, hoping they will become significant for diagnosis, therapy and prevention of DN.  相似文献   
5.
6.
7.
Periodontitis is a chronic complex inflammatory disease associated with a destructive host immune response to microbial dysbiosis, leading to irreversible loss of tooth-supporting tissues. Regeneration of functional periodontal soft (periodontal ligament and gingiva) and hard tissue components (cementum and alveolar bone) to replace lost tissues is the ultimate goal of periodontal treatment, but clinically predictable treatments are lacking. Similarly, the identification of biomarkers that can be used to accurately diagnose periodontitis activity is lacking. A relatively novel category of molecules found in oral tissue, circular RNAs (circRNAs) are single-stranded endogenous, long, non-coding RNA molecules, with covalently circular-closed structures without a 5’ cap and a 3’ tail via non-classic backsplicing. Emerging research indicates that circRNAs are tissue and disease-specific expressed and have crucial regulatory functions in various diseases. CircRNAs can function as microRNA or RNA binding sites or can regulate mRNA. In this review, we explore the biogenesis and function of circRNAs in the context of the emerging role of circRNAs in periodontitis pathogenesis and the differentiation of periodontal cells. CircMAP3K11, circCDK8, circCDR1as, circ_0062491, and circ_0095812 are associated with pathological periodontitis tissues. Furthermore, circRNAs are expressed in periodontal cells in a cell-specific manner. They can function as microRNA sponges and can form circRNA–miRNA–mRNA networks during osteogenic differentiation for periodontal-tissue (or dental pulp)-derived progenitor cells.  相似文献   
8.
9.
Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism’s nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.  相似文献   
10.
Treating neuroinflammation-related injuries and disorders through manipulation of neuroinflammation functions is being heralded as a new therapeutic strategy. In this study, a novel pectic galactan (PG) polysaccharide based gene therapy approach is developed for targeting reactive gliosis in neuroinflammation. Galectin-3 (Gal-3) is a cell protein with a high affinity to β-galactoside sugars and is highly expressed in reactive gliosis. Since PG carries galactans, it can target reactive gliosis via specific carbohydrate interaction between galactan and Gal-3 on the cell membrane, and therefore can be utilized as a carrier for delivering genes to these cells. The carrier is synthesized by modifying quaternary ammonium groups on the PG. The resulting quaternized PG (QPG) is found to form complexes with plasmid DNA with a mean diameter of 100 nm and have the characteristics required for targeted gene therapy. The complexes efficiently condense large amounts of plasmid per particle and successfully bind to Gal-3. The in vivo study shows that the complexes are biocompatible and safe for administration and can selectively transfect reactive glial cells of an induced cortical lesion. The results confirm that this PG-based delivery system is a promising platform for targeting Gal-3 overexpressing neuroinflammation cells for treating neuroinflammation-related injuries and neurodegenerative diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号