首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   48篇
  国内免费   9篇
综合类   3篇
化学工业   206篇
金属工艺   1篇
机械仪表   7篇
轻工业   198篇
无线电   4篇
一般工业技术   2篇
冶金工业   1篇
原子能技术   1篇
自动化技术   9篇
  2024年   4篇
  2023年   16篇
  2022年   45篇
  2021年   33篇
  2020年   17篇
  2019年   26篇
  2018年   29篇
  2017年   24篇
  2016年   20篇
  2015年   18篇
  2014年   27篇
  2013年   22篇
  2012年   25篇
  2011年   16篇
  2010年   15篇
  2009年   16篇
  2008年   10篇
  2007年   12篇
  2006年   9篇
  2005年   15篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
排序方式: 共有432条查询结果,搜索用时 15 毫秒
1.
The diagnosis and treatment of prostate cancer (PCa) is a major health-care concern worldwide. This cancer can manifest itself in many distinct forms and the transition from clinically indolent PCa to the more invasive aggressive form remains poorly understood. It is now universally accepted that glycan expression patterns change with the cellular modifications that accompany the onset of tumorigenesis. The aim of this study was to investigate if differential glycosylation patterns could distinguish between indolent, significant, and aggressive PCa. Whole serum N-glycan profiling was carried out on 117 prostate cancer patients’ serum using our automated, high-throughput analysis platform for glycan-profiling which utilizes ultra-performance liquid chromatography (UPLC) to obtain high resolution separation of N-linked glycans released from the serum glycoproteins. We observed increases in hybrid, oligomannose, and biantennary digalactosylated monosialylated glycans (M5A1G1S1, M8, and A2G2S1), bisecting glycans (A2B, A2(6)BG1) and monoantennary glycans (A1), and decreases in triantennary trigalactosylated trisialylated glycans with and without core fucose (A3G3S3 and FA3G3S3) with PCa progression from indolent through significant and aggressive disease. These changes give us an insight into the disease pathogenesis and identify potential biomarkers for monitoring the PCa progression, however these need further confirmation studies.  相似文献   
2.
Protein trafficking is altered when normal cells acquire a tumor phenotype. A key subcellular compartment in regulating protein trafficking is the Golgi apparatus, but its role in carcinogenesis is still not well defined. Golgi phosphoprotein 3 (GOLPH3), a peripheral membrane protein mostly localized at the trans-Golgi network, is overexpressed in several tumor types including glioblastoma multiforme (GBM), the most lethal primary brain tumor. Moreover, GOLPH3 is currently considered an oncoprotein, however its precise function in GBM is not fully understood. Here, we analyzed in T98G cells of GBM, which express high levels of epidermal growth factor receptor (EGFR), the effect of stable RNAi-mediated knockdown of GOLPH3. We found that silencing GOLPH3 caused a significant reduction in the proliferation of T98G cells and an unexpected increase in total EGFR levels, even at the cell surface, which was however less prone to ligand-induced autophosphorylation. Furthermore, silencing GOLPH3 decreased EGFR sialylation and fucosylation, which correlated with delayed ligand-induced EGFR downregulation and its accumulation at endo-lysosomal compartments. Finally, we found that EGF failed at promoting EGFR ubiquitylation when the levels of GOLPH3 were reduced. Altogether, our results show that GOLPH3 in T98G cells regulates the endocytic trafficking and activation of EGFR likely by affecting its extent of glycosylation and ubiquitylation.  相似文献   
3.
In recent years, there has been rapid expansion of glycan synthesis, fueled by the recognition that the structural complexity of sugars translates to a myriad of biological functions. Such chemical syntheses involve many challenges, mostly due to the regio- and stereochemical aspects of glycosidic bond formation. One-pot strategies were developed to assist in attaining faster and more economical access to the glycan constructs. In this front, achievements in protecting group manipulation, glycosylation, and combinations of these have been reported. Protecting group manipulations in one pot take advantage of the reaction compatibility of commonly used transformations, many of which occur in high regioselectivity. Sequential glycosylations, on the other hand, rely on leaving group orthogonalities and reactivity tuning, as well as the preactivation technique. Altogether, these approaches offer attractive means to the much needed glycan structures and, consequently, help usher in advances in glycoscience.  相似文献   
4.
Glycopolymers have attracted increased attention as functional polymeric materials, and simple methods for synthesizing glycopolymers remain needed. This paper reports the aqueous one-pot and chemoenzymatic synthesis of four types of glycopolymers via two reactions: the β-galactosidase-catalyzed glycomonomer synthesis using 4,6-dimetoxy triazinyl β-D-galactopyranoside and hydroxy group-containing (meth)acrylamide and (meth)acrylate derivatives as the activated glycosyl donor substrate and as the glycomonomer precursors, respectively, followed by radical copolymerization of the resulting glycomonomer and excess glycomonomer precursor without isolating the glycomonomers. The resulting glycopolymers bearing galactose moieties exhibited specific and strong interactions with the lectin peanut agglutinin as glycoclusters.  相似文献   
5.
6.
基于核Fisher判别分析的蛋白质氧链糖基化位点的预测   总被引:1,自引:0,他引:1  
杨雪梅  李世鹏 《计算机应用》2010,30(11):2959-2961
以各种窗口长度的蛋白质样本序列为研究对象,实验样本用稀疏编码方式编码,使用核Fisher判别分析(KFDA)的方法来预测蛋白质氧链糖基化位点。首先通过非线性映射(由核函数隐含定义)将样本映射到特征空间,然后在特征空间中用Fisher判别分析进行分类。进一步,用多数投票策略对各种窗口下的分类器进行组合以综合多个窗口的优势。实验结果表明,使用组合KFDA的方法预测的效果优于FDA和PCA以及单个KFDA分类器的预测效果,预测准确率为86.5%。  相似文献   
7.
Advances in research have boosted therapy development for congenital disorders of glycosylation (CDG), a group of rare genetic disorders affecting protein and lipid glycosylation and glycosylphosphatidylinositol anchor biosynthesis. The (re)use of known drugs for novel medical purposes, known as drug repositioning, is growing for both common and rare disorders. The latest innovation concerns the rational search for repositioned molecules which also benefits from artificial intelligence (AI). Compared to traditional methods, drug repositioning accelerates the overall drug discovery process while saving costs. This is particularly valuable for rare diseases. AI tools have proven their worth in diagnosis, in disease classification and characterization, and ultimately in therapy discovery in rare diseases. The availability of biomarkers and reliable disease models is critical for research and development of new drugs, especially for rare and heterogeneous diseases such as CDG. This work reviews the literature related to repositioned drugs for CDG, discovered by serendipity or through a systemic approach. Recent advances in biomarkers and disease models are also outlined as well as stakeholders’ views on AI for therapy discovery in CDG.  相似文献   
8.
Abnormal glycosylation of cancer cells is considered a key factor of carcinogenesis related to growth, proliferation, migration and invasion of tumor cells. Many plant-based polyphenolic compounds reveal potential anti-cancer properties effecting cellular signaling systems. Herein, we assessed the effects of phenolic acid, p-coumaric acid and flavonoids such as kaempferol, astragalin or tiliroside on expression of selected cancer-related glycoforms and enzymes involved in their formation in AGS gastric cancer cells. The cells were treated with 80 and 160 µM of the compounds. RT-PCR, Western blotting and ELISA tests were performed to determine the influence of polyphenolics on analyzed factors. All the examined compounds inhibited the expression of MUC1, ST6GalNAcT2 and FUT4 mRNAs. C1GalT1, St3Gal-IV and FUT4 proteins as well as MUC1 domain, Tn and sialyl T antigen detected in cell lysates were also lowered. Both concentrations of kaempferol, astragalin and tiliroside also suppressed ppGalNAcT2 and C1GalT1 mRNAs. MUC1 cytoplasmic domain, sialyl Tn, T antigens in cell lysates and sialyl T in culture medium were inhibited only by kaempferol and tiliroside. Nuclear factor NF-κB mRNA expression decreased after treatment with both concentrations of kaempferol, astragalin and tiliroside. NF-κB protein expression was inhibited by kaempferol and tiliroside. The results indicate the rationality of application of examined polyphenolics as potential preventive agents against gastric cancer development.  相似文献   
9.
蛋白质糖基化不仅存在于生物体自然过程中,也是改善蛋白质活性的一种新方法。以往的研究表明蛋白质与糖基化接枝能够显著改善蛋白质的功能特性且优于其他改性方法。文章系统阐述了蛋白质糖基化改性的反应机理、合成方法、评价指标,糖基化接枝对蛋白质的溶解性、乳化性、热稳定性、抗氧化性、溶菌性等特性的改善以及对蛋白质结构的影响,并对蛋白质糖基化改性的研究方向进行了展望。   相似文献   
10.
研究蛋白-葡萄糖质量比(4∶1、2∶1、1∶1、1∶2)、反应温度(70、80、90℃)和反应时间(0、1、2、3、4、5、6 h)对大豆分离蛋白糖基化产物蛋白凝胶特性的影响。结果表明:反应体系的颜色随加热时间延长逐渐加深,p H逐渐降低;在适当的糖基化改性条件下,大豆分离蛋白(SPI)凝胶质构特性呈现先升高后下降的趋势,在蛋白与葡萄糖质量比为1∶1时,70℃下反应6 h所得产物的硬度最大值达383.21 g,是未改性SPI硬度的7.51倍;相同比例底物在70℃反应4 h所得产物的弹性最大,达到0.981,比天然SPI的弹性提高了8.16%;不同底物比例的各温度反应体系产物的色差值随着加热时间的增加均逐渐变大;SPI在SDS-PAGE图谱中主要显示了6条带,不同比例反应底物在70、80、90℃反应16 h的糖基化产物均在大于200 k D分子量处出现新的条带。因此,对大豆分离蛋白进行适当的糖基化改性能够有效地提高其凝胶特性。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号