首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   21篇
  国内免费   2篇
综合类   12篇
化学工业   219篇
金属工艺   1篇
机械仪表   2篇
轻工业   8篇
石油天然气   5篇
无线电   3篇
一般工业技术   43篇
冶金工业   1篇
  2023年   4篇
  2022年   1篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   13篇
  2016年   10篇
  2015年   6篇
  2014年   12篇
  2013年   14篇
  2012年   28篇
  2011年   15篇
  2010年   18篇
  2009年   17篇
  2008年   17篇
  2007年   21篇
  2006年   23篇
  2005年   24篇
  2004年   11篇
  2003年   13篇
  2002年   10篇
  2001年   8篇
  2000年   10篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有294条查询结果,搜索用时 31 毫秒
1.
Ring‐opening polymerization of D,L ‐lactide (LA) has been successfully carried out by using rare earth 2,6‐dimethylaryloxide (Ln(ODMP)3) as single component catalyst or initiator for the first time. The effects of different rare earth elements, solvents, monomers and catalyst concentration as well as polymerization temperature and time on the polymerization were investigated. The results show that La(ODMP)3 exhibits higher activity to prepare poly(D,L ‐lactide) (PLA) with a viscosity molecular weight of 4.5 × 104 g mol?1 and the conversion of 97 % at 100 °C in 45 min. The catalytic activity of Ln(ODMP)3 has following sequence: La > Nd > Sm > Gd > Er > Y. A kinetic study has indicated that the polymerization is first order with respect to both monomer and catalyst concentration. The apparent activation energy of the polymerization of LA with La(ODMP)3 is 69.6 kJ mol?1. The analyses of polymer ends indicate that the LA polymerization proceeds according to ‘coordination–insertion’ mechanism with selective cleavage of the acyl–oxygen bond of the monomer. Copyright © 2004 Society of Chemical Industry  相似文献   
2.
Core–shell type nanoparticles of poly(L ‐lactide)/poly(ethylene glycol) (LE) diblock copolymer were prepared by a dialysis technique. Their size was confirmed as 40–70 nm using photon correlation spectroscopy. The 1H‐NMR analysis confirmed the formation of core–shell type nanoparticles and drug loading. The particle size, drug loading, and drug release rate of the LE nanoparticles were slightly changed by the initial solvents that were used. The drug release behavior of LE core–shell type nanoparticles showed an initial burst during the first 12 h and then a sustained release until 100 h. The degradation behavior of LE block copolymer nanoparticles was divided into three phases: the initial rapid degradation phase, the stationary phase, and the rapid degradation phase until complete degradation. It was suggested that lidocaine release kinetics were predominantly governed by the diffusion mechanism in the initial burst phase and after that by both of the diffusion and degradation mechanisms. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2625–2634, 2002  相似文献   
3.
烧结温度和pH值对HA合成的影响   总被引:1,自引:0,他引:1  
采用液相沉淀法制备了纳米级的HAP粉末,并进一步对合成的材料进行DTA和RD分析,研究了温度和pH值对羟基磷灰石粉体合成的影响。制备的羟基磷灰石粉体纯度较高,随着温度的增加其晶化程度增加。  相似文献   
4.
Poly(L‐lactide)‐poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. The reaction was carried out under mild conditions, using dicyclohexylcarbodiimide as the coupling agent and dimethylaminopyridine as the catalyst. The resulting copolymers were characterized by various analytical techniques, such as GPC, viscometry, 1H‐NMR, FTIR, DSC, X‐ray diffractometry, and contact angle measurement. The results indicated that these copolymers presented outstanding properties pertinent to biomedical use, including better miscibility between the two components, low crystallinity, and hydrophilicity. Moreover, the properties of the copolymers can be modulated by adjusting the block length of the two components or the reaction conditions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1729–1736, 2002; DOI 10.1002/app.10580  相似文献   
5.
含PLA-PEG-PLA三嵌段共聚物的 可降解聚氨酯的合成及表征   总被引:1,自引:0,他引:1  
用聚乙二醇(PEG)和左旋丙交酯(L-LA)合成了不同比例的聚乳酸-聚乙二醇三嵌段共聚物(PLA-PEG-PLA),通过傅立叶变换红外光谱分析(FTIR)和核磁共振(1H NMR)测试分析了所得嵌段共聚物的结构。并以此嵌段共聚物为软段,用溶液法和六亚甲基二异氰酸酯(HDI)和扩链剂(BDO)以不同的比例合成了一系列聚氨酯,通过傅立叶变换红外光谱分析(FTIR)和差动量热扫描分析(DSC)表征聚氨酯结构。对此聚氨酯在37 ℃的PBS缓冲溶液(pH=7.4)中进行模拟体内环境的降解测试,通过失重率来评价聚氨酯的降解速率,结果表明降解速度与软硬段比例,共聚物中PEG/PLA的比例有关。并且实验表明此材料不会引起红细胞发生溶血。因此这种新型可降解聚氨酯材料可以根据各组分以及组分比例来调整聚合物的降解速率,此材料将在组织工程支架以及药物缓释载体领域有广阔的应用前景。  相似文献   
6.
采用磷钨酸-氧化锌为催化剂,将D,L-乳酸先缩聚后解聚制备了D,L-丙交酯。研究表明:在以催化剂质量分数为乳酸的1.2%,磷钨酸(H3PW12O14)与ZnO质量比2/3,真空度为2.0 kPa,缩聚时间为2.5 h,缩聚温度为140℃,解聚温度为230℃的条件下,用乙酸乙酯重结晶之后,可获得的D,L-丙交酯产率为25.0%。在同等条件下,加入10 mL乙二醇作为稀释剂,用乙酸乙酯重结晶之后可获得的D,L-丙交酯产率为29.4%。  相似文献   
7.
1INTRODUCTION Polylactide,oneoftheimportantbiodegrada blematerials,whichhasfavorablebiocompatibility andabsorption[1],hasbeenusedinimplant,chor dasericachirurgicalis,drugcontrolledrelease,boneinternalfixation,tissueengineeringetc[25]. Thepoly(L lactide)(PLLA)withhighrelative molecularmasswasobtainedbyring openingpoly merizationatpresent.Thatis,firsttheintermedi ateproduct(lactide)wasobtainedfromlacticacid, thenthepoly(L lactide)wasobtainedfrominter mediateproductbyring openingpolymer…  相似文献   
8.
Blown films from poly(butylene adipate‐co‐terephthalate) and poly(lactide) (PLA) blends were investigated. The blends were prepared in a twin‐screw extruder, in the presence of small amounts of dicumyl peroxide (DCP). The influence of DCP concentration on film blowing, rheological, mechanical, and thermal properties of the blends is reported in this article. Rheological results showed a marked increase in polymer melt strength and elasticity with the addition of DCP. As a consequence, the film homogeneity and the stability of the bubble were improved. The modified blend films, compared with the unmodified blend, showed an improvement in tensile strength and modulus with a slight loss in elongation. Fourier transform infrared and gel results revealed that chain scission and branching were more significant than crosslinking when the DCP loadings in the blends were not higher than 0.7%. A reduction in melt temperatures of PLA was observed due to difficulty in chain crystallization. The concentrations of DCP strongly affected the melting temperatures but had an insignificant effect on the decomposition behavior of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
9.
Poly(ε‐caprolactone)/poly(ε‐caprolactone‐colactide) (PCL/PLCL) blend filaments with various ratios of PCL and PLCL were prepared by melt spinning. The effect of PLCL content on the physical properties of the blended filament was investigated. The melt spinning of the blend was carried out and the as spun filament was subsequently subjected to drawing and heat setting process. The addition of PLCL caused significant changes in the mechanical properties of the filaments. Crystallinity of blend decreased with the addition of PLCL as observed by X‐ray diffraction (XRD) and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) revealed that the fracture surface becomes rougher at higher PLCL content. It may be proposed that PCL and PLCL show limited interaction within the blend matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
10.
Fluorescent markers are critical for tracking the position and movement of molecules both in vivo and in vitro. Conventionally, synthetic dyes are non‐covalently added to polymers for fluorescent tracking, but often diffuse away. Here we demonstrate, for the first time, a facile method for the synthesis of fluorescent poly(lactic acid) nano‐/microfibres for biomedical applications using solution spin blowing. Pyrene‐end‐capped poly(l ‐lactide) (PLLA) derivatives were synthesised using the ring‐opening polymerisation of l ‐lactide and they were characterised using spectroscopic and thermal analyses. Submicrometre‐sized fluorescent fibres were produced from these PLLA derivatives using solution blow spinning techniques generating polymer blends and core–shell fibres. Such system could be further exploited to incorporate electrically conductive carbon allotropes via the pyrene aromaticity, producing fluorescent and electrically active fibres for in vitro monitoring and electrical stimulation. © 2018 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号