首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
化学工业   2篇
轻工业   7篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  1994年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The physical properties of the capsular polysaccharide of Rhizobium Trifolii (CPS) were investigated. Viscosity measurements provided information about the hydrodynamic volume of single coils, the perturbation of solvent flow and the shear-thinning behaviour of concentrated solutions. Changes in chain geometry and the development of an intermolecular network as a function of temperature were monitored using the techniques of optical rotation and dynamic oscillation. Finally, analysis of calorimetric thermograms elucidated the type of interactions between CPS and the bacterial levan. Overall, the Rhizobium polysaccharide was found to form thermally-reversible gels at an extremely low 'minimum critical gelling concentration' (co∼ 0.35gl-1). At temperatures above the gel melting point (∼ 48°C), however, the compact polymer coils entangled at comparatively high concentrations (about 60 times higher than co). In the presence of a highly branched levan, the thermal stability of ordered CPS structures increased as a consequence of thermodynamic incompatibility between the two polymers.  相似文献   
2.
陆娟  肖敏  卢丽丽 《食品科学》2011,32(7):183-187
通过单因素试验(培养基用水、碳源、氮源、培养温度和培养基初始pH值)和正交试验对地衣芽孢杆菌(Bacillus licheniformis)8-37-0-1发酵产生Levan果聚糖的培养基组成及培养条件进行优化,采用苯酚-硫酸法测定多糖含量。结果表明:以蔗糖100g/L、牛肉膏1.0g/L、酵母粉0.6g/L、K2HPO4 3.0g/L、KH2PO4 3.0g/L、NaCl 1.0g/L、MgSO4·7H2O 0.2g/L、FeSO4·7H2O 0.001g/L,自来水配制,培养基初始pH5.0,30℃培养8-37-0-1菌株24h,Levan果聚糖产量达到最高值41.7g/L,约是未优化时的5.0倍。  相似文献   
3.
Enzymes with fructan exohydrolase (FEH) activity are present not only in fructan-synthesizing species but also in non-fructan plants. This has led to speculation about their functions in non-fructan species. Here, a cell wall invertase-related Zm-6&1-FEH2 with no “classical” invertase motif was identified in maize. Following heterologous expression in Pichia pastoris and in Nicotiana benthamiana leaves, the enzyme activity of recombinant Zm-6&1-FEH2 displays substrate specificity with respect to inulin and levan. Subcellular localization showed Zm-6&1-FEH2 exclusively localized in the apoplast, and its expression profile was strongly dependent on plant development and in response to drought and abscisic acid. Furthermore, formation of 1-kestotriose, an oligofructan, was detected in vivo and in vitro and could be hydrolyzed by Zm-6&1-FEH2. In summary, these results support that Zm-6&1-FEH2 enzyme from maize can degrade both inulin-type and levan-type fructans, and the implications of the co-existence of Zm-6&1-FEH2 and 1-kestotriose are discussed.  相似文献   
4.
Amyloglucosidase (exo‐1,4‐ α‐D‐glucosidase, E C 3.2. 1.3) was coupled to glutaraldehyde activated Indion 48‐R (a cross‐linked macroporous anion exchanger) by Schiff base reaction. The bound enzyme exhibited 60–70% activity of the free enzyme. Substrate concentrations as high as 32% (w/w) liquefied tapioca starch could be quantitatively converted into 96–98% (w/w) dextrose in 24 h at 50°C and pH 4.5. Though immobilization lowered the temperature optimum to 50–60°C from 65°C for the free enzyme, it increased the temperature stability. However, there was no change either in the pH optimum or pH stability after immobilization. In batch operations, the immobilized preparation showed a half life of 32 and 12 days at 50°C and 60°C respectively.  相似文献   
5.
The objective of this study was to investigate the antibacterial activity of levan compounds, including high‐molecular‐weight levan, low‐molecular‐weight levan and difructose dianhydride IV (DFA IV). The levans exhibited broad antibacterial spectra against foodborne pathogenic bacteria, in a concentration‐dependent manner. From comparison with simple saccharides, often regarded as by‐products of levan production, it turned out that the antibacterial activity of levans was primarily caused by themselves. The strongest effect was observed with low‐molecular‐weight levan as compared to the others, and oligosaccharides as well. The low‐molecular‐weight levan was therefore applied to bread making. The bread samples inoculated with pathogenic bacteria were divided into two groups: bread with sugar alone (control) and bread with both sugar and levan (treatment). It was found from the in situ test that the viability of pathogenic bacteria in bread was reduced by the addition of low‐molecular‐weight levan. Therefore, levan compounds have potential as alternative sweeteners for reduction in pathogenic contamination.  相似文献   
6.
Levan, as a biocompatible and renewable biopolymer with anticancer properties, is a promising candidate for a wide range of applications in various fields of industry. However, in the literature, there is a lack of information about its behavior under the influence of UV irradiation, which may limit its potential application, including medical science. Therefore, this study describes the effects of irradiation on the structural properties of levan. This type of fructan was subjected to stability tests under radiation conditions using LED and polychromatic lamps. The results showed that the photodegradation of levan irradiated with a polychromatic light occurs faster and more efficiently than the photodegradation of levan irradiated with an LED lamp. Furthermore, AFM analysis showed that the surface became smoother after irradiation, as evidenced by decreasing values of roughness parameters. Moreover, UV irradiation causes the decrease of total surface free energy and both its components in levan; however, more significant changes occur during irradiation of the sample with a polychromatic lamp.  相似文献   
7.
The newly established difructose anhydride IV (DFA IV) production system is comprised of the effective production of levan from sucrose by Serratia levanicum NN, the conversion of the levan into DFA IV by levan fructotransferase from Arthrobacter nicotinovorans GS-9, which is highly expressed in an Escherichiacoli transformant, and a practical purification step. The chemical properties of DFA IV were also investigated.  相似文献   
8.
9.
挖掘具有高热稳定性的β-(2,6)果聚糖蔗糖酶(levansucrase,LS),并应用果聚糖蔗糖酶进行β-(2,6)果聚糖的高效合成。以分子动力学模拟的方式筛选出具有潜在高热稳定性的β-(2,6)果聚糖蔗糖酶。将目的酶在大肠杆菌Escherichia coli BL21(DE3)中进行重组及诱导表达,并通过镍柱亲和层析进行纯化。在不同温度下进行保温实验以验证LS的热稳定性,并通过条件优化获得产物的高转化率。Cedi-LS在65 ℃时显示出最高活性,远高于已鉴定的其他LS。同时,在45 ℃下保温72 h,重组酶Cedi-LS能够保留90%以上的相对活性;在55 ℃下保温60 h,其保留活性仍可达到初始活性的60%以上,表现出优异的热稳定性。在反应过程中,Cedi-LS可同时生成低聚糖、低相对分子质量的β-(2,6)果聚糖和高相对分子质量的β-(2,6)果聚糖。当温度从65 ℃降至35 ℃时,Cedi-LS倾向于产生HMW-levan,其相对分子质量可达8.4×106。在pH 5.5和35 ℃的条件下,以质量分数30%的蔗糖为底物,加酶量定20 μg/mL,蔗糖转化为β-(2,6)果聚糖的平衡转化率为41.4%。作者鉴定了一种具有高热稳定性的LS,并且这种LS能够高效生产一系列具有不同相对分子质量的果聚糖。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号