首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24437篇
  免费   1920篇
  国内免费   871篇
电工技术   715篇
综合类   1608篇
化学工业   6918篇
金属工艺   1105篇
机械仪表   400篇
建筑科学   1704篇
矿业工程   943篇
能源动力   1350篇
轻工业   3903篇
水利工程   540篇
石油天然气   2221篇
武器工业   56篇
无线电   768篇
一般工业技术   1385篇
冶金工业   1529篇
原子能技术   115篇
自动化技术   1968篇
  2024年   81篇
  2023年   277篇
  2022年   587篇
  2021年   681篇
  2020年   724篇
  2019年   717篇
  2018年   637篇
  2017年   759篇
  2016年   825篇
  2015年   841篇
  2014年   1506篇
  2013年   1590篇
  2012年   1870篇
  2011年   1904篇
  2010年   1443篇
  2009年   1365篇
  2008年   1173篇
  2007年   1490篇
  2006年   1310篇
  2005年   1176篇
  2004年   1074篇
  2003年   892篇
  2002年   719篇
  2001年   597篇
  2000年   524篇
  1999年   419篇
  1998年   363篇
  1997年   268篇
  1996年   257篇
  1995年   260篇
  1994年   200篇
  1993年   143篇
  1992年   108篇
  1991年   88篇
  1990年   62篇
  1989年   52篇
  1988年   42篇
  1987年   32篇
  1986年   28篇
  1985年   27篇
  1984年   20篇
  1983年   8篇
  1982年   17篇
  1981年   13篇
  1980年   9篇
  1979年   6篇
  1964年   4篇
  1959年   3篇
  1958年   3篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
2.
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al).  相似文献   
3.
This paper presents a novel No-Reference Video Quality Assessment (NR-VQA) model that utilizes proposed 3D steerable wavelet transform-based Natural Video Statistics (NVS) features as well as human perceptual features. Additionally, we proposed a novel two-stage regression scheme that significantly improves the overall performance of quality estimation. In the first stage, transform-based NVS and human perceptual features are separately passed through the proposed hybrid regression scheme: Support Vector Regression (SVR) followed by Polynomial curve fitting. The two visual quality scores predicted from the first stage are then used as features for the similar second stage. This predicts the final quality scores of distorted videos by achieving score level fusion. Extensive experiments were conducted using five authentic and four synthetic distortion databases. Experimental results demonstrate that the proposed method outperforms other published state-of-the-art benchmark methods on synthetic distortion databases and is among the top performers on authentic distortion databases. The source code is available at https://github.com/anishVNIT/two-stage-vqa.  相似文献   
4.
The potential of using high metals containing coal gangue and lignite to prepare high-activity coal char-based catalysts is investigated for effective biomass tar decomposition. Loose structure and rough surface are formed for these char-based catalysts with heterogeneous distribution of a large number of inorganic particles. In the biomass tar decomposition, the performance of the coal char-based catalysts is significantly influenced by the content of the metals in the raw materials and coal gangue char (GC) with the ash content as high as 50.80% exhibits the highest activity in this work. A high biomass tar conversion efficiency of 93.5% is achieved at 800 °C along with a significant increase in the fuel gas product. During the five-time consecutive tests, the catalytic performance of GC increases a little at the second or third times reuse and remains relatively stable, showing the remarkable stability of the catalyst in biomass tar decomposition applications.  相似文献   
5.
6.
《Ceramics International》2021,47(21):30298-30309
The novel Al4O4C–(Al2OC)1-x(AlN)x–Zr2Al3C4–Al2O3 refractories with ultra-low carbon content have been successfully prepared by constructing the core-shell structure of aluminum at 1300–1700°C in nitrogen. The phase composition, microstructure, and properties of the novel refractories are deeply investigated. The cracking temperature on the core-shell structure of aluminum is further explored and the reaction mechanism of Zr2Al3C4 has also added explanation. The results show that the novel refractories have excellent physical properties and cannot be corroded by molten iron. There exist two different Al2OC solid solutions in the novel refractories, Al2OC-rich (Al2OC)1-x(AlN)x and AlN-rich (Al2OC)1-x(AlN)x. The temperatures affect their relative content. When temperatures are less than 1600°C, the relative content of Al2OC-rich (Al2OC)1-x(AlN)x is more than that of AlN-rich (Al2OC)1-x(AlN)x. When temperatures are above 1700°C, the relative content of AlN-rich (Al2OC)1-x(AlN)x is more than that of Al2OC-rich (Al2OC)1-x(AlN)x. The core-shell structure of aluminum fully ruptures at about 1200°C. Zr2Al3C4 begins to form at about 1000°C and generates in large at 1200°C.  相似文献   
7.
Direct methanol fuel cells (DMFC), among the most suited and prospective alternatives for portable electronics, have lately been treated with nanotechnology. DMFCs may be able to remedy the energy security issue by having low operating temperatures, high conversion efficiencies, and minimal emission levels. Though, slow reaction kinetics are a significant restriction of DMFC, lowering efficiency and energy output. Nowadays, research is more focused on fundamental studies that are studying the factors that can improve the capacity and activity of catalysts. In DMFC, among the most widely explored catalysts are platinum and ruthenium which are enhanced in nature by the presence of supporting materials such as nanocarbons and metal oxides. As a result, this research sheds light on nanocatalyst development for DMFCs based on Platinum noble metal. To summarize, this research focuses on the structure of nanocatalysts, as well as support materials for nanocatalysts that can be 3D, 2D, 1D, or 0D. The support material described is made up of CNT, CNF, and CNW, which are the most extensively used because they improve the performance of catalysts in DMFCs. In addition, cost estimations for fuel cell technology are emphasized to show the technology's status and requirements. Finally, challenges to nanocatalyst development have been recognized, as well as future prospects, as recommendations for more innovative future research.  相似文献   
8.
The combustion characteristics of ammonia/methanol mixtures were investigated numerically in this study. Methanol has a dramatic promotive effect on the laminar burning velocity (LBV) of ammonia. Three mechanisms from literature and another four self-developed mechanisms constructed in this study were evaluated using the measured laminar burning velocities of ammonia/methanol mixtures from Wang et al. (Combust.Flame. 2021). Generally, none of the selected mechanisms can precisely predict the measured laminar burning velocities at all conditions. Aiming to develop a simplified and reliable mechanism for ammonia/methanol mixtures, the constructed mechanism utilized NUI Galway mechanism (Combust.Flame. 2016) as methanol sub-mechanism and the Otomo mechanism (Int. J. Hydrogen. Energy. 2018) as ammonia sub-mechanism was optimized and reduced. The reduced mechanism entitled ‘DNO-NH3’, can accurately reproduce the measured laminar burning velocities of ammonia/methanol mixtures under all conditions. A reaction path analysis of the ammonia/methanol mixtures based on the DNO-NH3 mechanism shows that methanol is not directly involved in ammonia oxidation, instead, the produced methyl radicals from methanol oxidization contribute to the dehydrogenation of ammonia. Besides, NOx emission analysis demonstrates that 60% methanol addition results in the highest NOx emissions. The most important reactions dominating the NOx consumption and production are identified in this study.  相似文献   
9.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号