首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学工业   3篇
机械仪表   1篇
轻工业   6篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2011年   1篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Protein phosphorylation is one of the most studied post-translational modifications (PTMs). Despite the remarkable advances in phosphoproteomics, a chemically less-stable subset of the phosphosites, which we call the crypto-phosphoproteome, has remained underexplored due to technological challenges. In this Viewpoint, we briefly summarize the current understanding of these elusive protein phosphorylations and identify the missing pieces for future studies.  相似文献   
2.
《Journal of dairy science》2022,105(11):9240-9252
The small intestine is the primary site of nutrient digestion and absorption, which plays a key role in the survival of neonatal calves. A comprehensive assessment of the phosphoproteomic changes in the small intestine of neonatal calves is unavailable; therefore, we used phosphopeptide enrichment coupled with liquid chromatography-tandem mass spectrometry to investigate the changes in the phosphoproteome profile in the bovine small intestine during the first 36 h of life. Twelve neonatal male calves were assigned to one of the following groups: (1) calves not fed colostrum and slaughtered approximately 2 h postpartum (n = 3), (2) calves fed colostrum at 1 to 2 h and slaughtered 8 h postpartum (n = 3), (3) calves fed 2 colostrum meals (at 1–2 and 10–12 h) and slaughtered 24 h postpartum (n = 3), (4) calves fed 3 colostrum meals (at 1–2, 10–12, and 22–24 h) and slaughtered 36 h postpartum (n = 3). Mid-duodenal, jejunal, and ileal samples of the calves were collected after slaughter. We identified 1,678 phosphoproteins with approximately 3,080 phosphosites, which were mainly Ser (89.9%), Thr (9.8%), and Tyr (0.3%) residues; they belonged to the prodirected (52.9%), basic (20.4%), acidic (16.6%), and Tyr-directed (1.7%) motif categories. The regional differentially expressed phosphoproteins included zonula occludens 2, sorting nexin 12, and protein kinase C, which are mainly associated with developmental processes, intracellular transport, vesicle-mediated transport, and immune system process. They are enriched in the endocytosis, tight junction, insulin signaling, and focal adhesion pathways. The temporal differentially expressed phosphoproteins included occludin, epsin 1, and bridging integrator 1, which were mainly associated with macromolecule metabolic process, cell adhesion, and growth. They were enriched in the spliceosomes, adherens junctions, and tight junctions. The observed changes in the phosphoproteins in the tissues of small intestine suggest the protein phosphorylation plays an important role in nutrient transport and immune response of calves during early life, which needs to be confirmed in a larger study.  相似文献   
3.
4.
Mitochondrial biogenesis is a highly controlled process that depends on diverse signalling pathways responding to cellular and environmental signals. AMP-activated protein kinase (AMPK) is a critical metabolic enzyme that acts at a central control point in cellular energy homeostasis. Numerous studies have revealed the crucial roles of AMPK in the regulation of mitochondrial biogenesis; however, molecular mechanisms underlying this process are still largely unknown. Previously, we have shown that, in cellular slime mould Dictyostelium discoideum, the overexpression of the catalytic α subunit of AMPK led to enhanced mitochondrial biogenesis, which was accompanied by reduced cell growth and aberrant development. Here, we applied mass spectrometry-based proteomics of Dictyostelium mitochondria to determine the impact of chronically active AMPKα on the phosphorylation state and abundance of mitochondrial proteins and to identify potential protein targets leading to the biogenesis of mitochondria. Our results demonstrate that enhanced mitochondrial biogenesis is associated with variations in the phosphorylation levels and abundance of proteins related to energy metabolism, protein synthesis, transport, inner membrane biogenesis, and cellular signalling. The observed changes are accompanied by elevated mitochondrial respiratory activity in the AMPK overexpression strain. Our work is the first study reporting on the global phosphoproteome profiling of D. discoideum mitochondria and its changes as a response to constitutively active AMPK. We also propose an interplay between the AMPK and mTORC1 signalling pathways in controlling the cellular growth and biogenesis of mitochondria in Dictyostelium as a model organism.  相似文献   
5.
6.
Protein phosphorylation is involved in nearly all essential biochemical pathways and the deregulation of phosphorylation events has been associated with the onset of numerous diseases. A multitude of tandem mass spectrometry (MS/MS) and multistage MS/MS (i.e., MSn) strategies have been developed in recent years and have been applied toward comprehensive phosphoproteomic analysis, based on the interrogation of proteolytically derived phosphopeptides. However, the utility of each of these MS/MS and MSn approaches for phosphopeptide identification and characterization, including phosphorylation site localization, is critically dependant on the properties of the precursor ion (e.g., polarity and charge state), the specific ion activation method that is employed, and the underlying gas‐phase ion chemistries, mechanisms and other factors that influence the gas‐phase fragmentation behavior of phosphopeptide ions. This review therefore provides an overview of recent studies aimed at developing an improved understanding of these issues, and highlights the advantages and limitations of both established (e.g., CID) and newly maturing (e.g., ECD, ETD, photodissociation, etc.) yet complementary, ion activation techniques. This understanding is expected to facilitate the continued refinement of existing MS/MS strategies, and the development of novel MS/MS techniques for phosphopeptide analysis, with great promise in providing new insights into the role of protein phosphorylation on normal biological function, and in the onset and progression of disease. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:600–625, 2011  相似文献   
7.
为了系统地阐明鸡蛋清磷酸化蛋白质的结构和功能特性,本研究采用蛋白质组学策略对鸡蛋清的磷酸化修饰蛋白质组进行鉴定与分析。鸡蛋清酶解产物首先经固定化金属螯合亲和层析分离富集磷酸肽,再经纳升液相色谱-串联质谱分析和鉴定。通过数据库检索匹配,共鉴定出33 个特异性磷酸化修饰多肽,包含41 个磷酸化修饰位点,归属于25 种鸡蛋清磷酸化蛋白。基序分析显示,大多数磷酸化修饰位点的序列特征为“S-X-E”;基因本体功能注释分析表明,鸡蛋清磷酸化蛋白质主要参与“生物调节”、“刺激反应”、“发育过程”等生物学过程,主要涉及“结合”、“催化”等分子功能。本研究结果将为鸡蛋清蛋白质相关研究提供关键的磷酸化修饰结构信息。  相似文献   
8.
A combination of affinity purification, 2D-PAGE and peptide mass fingerprinting was employed to study the phosphoprotein complement of Saccharomyces cerevisiae. Protein extracts were first passed through a phosphoprotein affinity column, and the phosphoprotein-enriched eluate fractions were then separated on 2D gels and visualized by staining with SYPRO Ruby. Proteins were excised from the gels and identified by peptide mass fingerprinting; 11/13 protein spots identified from a gel of the phosphoprotein-enriched fraction had prior published evidence indicating that they were phosphoproteins. Additional experiments using a specific stain for phosphoproteins, prior incubation of the protein extract with alkaline phosphatase and blotting with monoclonal antibodies to phosphothreonine, phosphoserine and phosphotyrosine demonstrated that the phosphoprotein affinity column was an effective method for enriching phosphoproteins. Further validating the method, growth of yeast in the presence of sorbic acid resulted in altered phosphorylation of 17 proteins, 13 of which had prior published evidence that they were phosphoproteins or had ATP binding activity.  相似文献   
9.
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号