首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22278篇
  免费   2204篇
  国内免费   332篇
电工技术   82篇
综合类   892篇
化学工业   6260篇
金属工艺   219篇
机械仪表   456篇
建筑科学   399篇
矿业工程   36篇
能源动力   75篇
轻工业   13437篇
水利工程   58篇
石油天然气   66篇
武器工业   17篇
无线电   409篇
一般工业技术   1663篇
冶金工业   129篇
原子能技术   61篇
自动化技术   555篇
  2024年   151篇
  2023年   427篇
  2022年   1057篇
  2021年   1451篇
  2020年   747篇
  2019年   863篇
  2018年   691篇
  2017年   807篇
  2016年   698篇
  2015年   885篇
  2014年   952篇
  2013年   1309篇
  2012年   1335篇
  2011年   1387篇
  2010年   1033篇
  2009年   961篇
  2008年   911篇
  2007年   1206篇
  2006年   1103篇
  2005年   962篇
  2004年   788篇
  2003年   633篇
  2002年   571篇
  2001年   447篇
  2000年   383篇
  1999年   422篇
  1998年   344篇
  1997年   273篇
  1996年   335篇
  1995年   295篇
  1994年   295篇
  1993年   230篇
  1992年   191篇
  1991年   133篇
  1990年   114篇
  1989年   100篇
  1988年   71篇
  1987年   63篇
  1986年   44篇
  1985年   46篇
  1984年   34篇
  1983年   12篇
  1982年   12篇
  1981年   3篇
  1980年   28篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
The purpose of this study was to increase the water solubility and potential bioavailability of quercetin by encapsulation in whey protein isolate (WPI) based on a green, efficient pH-driven method. According to the results, the water solubility of quercetin increased by 346.9: times after loading into WPI nanoparticles. When the initial quercetin concentration was 0.25 mg mL−1 and WPI was 2% w/v, the encapsulation efficiency reached 94.1%, the Z-average diameter was 36.63 nm, and the zeta potential was −36.4 mV at pH 7.0. The fluorescence spectroscopy assay suggested the molecular complexation of quercetin and WPI at pH 12.0. X-ray diffraction assay indicated the enclosure of amorphous quercetin in WPI. Correspondingly, the bioaccessibility increased from 2.76% to 31.23% and the Caco-2 cell monolayer uptake increased from 0% to 2.12% after nanoencapsulation. This work confirmed that the pH-driven method is an effective approach to prepare WPI–quercetin nanocapsules to improve physical and potentially biological properties of quercetin.  相似文献   
2.
While protein medications are promising for treatment of cancer and autoimmune diseases, challenges persist in terms of development and injection stability of high-concentration formulations. Here, the extensional flow properties of protein-excipient solutions are examined via dripping-onto-substrate extensional rheology, using a model ovalbumin (OVA) protein and biocompatible excipients polysorbate 20 (PS20) and 80 (PS80). Despite similar PS structures, differences in extensional flow are observed based on PS identity in two regimes: at moderate total concentrations where surface tension differences drive changes in extensional flow behavior, and at small PS:OVA ratios, which impact the onset of weakly elastic flow behavior. Undesirable elasticity is observed in ultra-concentrated formulations, independent of PS identity; higher PS contents are required to observe these effects than in analogous polymeric excipient solutions. These studies reveal novel extensional flow behaviors in protein-excipient solutions, and provide a straightforward methodology for assessing the extensional flow stability of new protein-excipient formulations.  相似文献   
3.
《Ceramics International》2021,47(19):27217-27229
Herein, an in-depth analysis of the effect of heat treatment at temperatures between 900 and 1500 °C under an Ar atmosphere on the structure as well as strength of Cansas-II SiC fibres was presented. The untreated fibres are composed of β-SiC grains, free carbon layers, as well as a small amount of an amorphous SiCxOy phase. As the heat-treatment temperature was increased to 1400 °C, a significant growth of the β-SiC grains and free carbon layers occurred along with the decomposition of the SiCxOy phase. Moreover, owing to the decomposition of the SiCxOy phase, some nanopores formed on the fibre surface upon heating at 1500 °C. The mean strength of the Cansas-II fibres decreased progressively from 2.78 to 1.20 GPa with an increase in the heat-treatment temperature. The degradation of the fibre strength can be attributed to the growth of critical defects, β-SiC grains, as well as the residual tensile stress.  相似文献   
4.
A set of novel hydrazone derivatives were synthesized and analyzed for their biological activities. The compounds were tested for their inhibitory effect on the phosphorylating activity of the protein kinase CK2, and their antioxidant activity was also determined in three commonly used assays. The hydrazones were evaluated for their radical scavenging against the DPPH, ABTS and peroxyl radicals. Several compounds have been identified as good antioxidants as well as potent protein kinase CK2 inhibitors. Most hydrazones containing a 4-N(CH3)2 residue or perfluorinated phenyl rings showed high activity in the radical-scavenging assays and possess nanomolar IC50 values in the kinase assays.  相似文献   
5.
《Ceramics International》2021,47(18):25883-25894
Oily wastewater treatment is a global challenge due to the substantial amount of effluent resulted from many industrial and domestic activities. To overcome the challenge of using existing treatment approach and fouling, superoleophobic coatings were fabricated. In this study, a superoleophobic membrane surface was obtained using the sol-gel technique with perfluorooctanoate (PFO), poly (diallyl dimethylammonium chloride) (PDADMAC), and nanoparticles as complex-polymer nanocomposites. The effects of coating cycles on the surface structure, chemical properties, surface chemistry, and oleophobicity of the surface were examined using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and oil contact angle measurement. The results showed that the coated layer successfully adhered to the substrate surface. However, the chemical stability with respect to oil contact angle (OCA) revealed a decline at pH 7 and pH 9 and maintained stability at pH 3. Besides, oil flux at 63.0 L/m2. h was achieved for PDADMAC-Al2O3/44 wt% PFO and the highest separation efficiency of 98% was obtained. Furthermore, the oil rejection decreases as the oil concentration increases from 1 to 3 g/L. OCA of 155° was obtained after 5 coating cycles. Apart from mitigating substrate fouling, the superoleophobic and superhydrophilic coating can be applied to a ceramic-based hollow fibre membrane and efficiently used for the separation of oil from oily wastewater.  相似文献   
6.
In this work, corn extruded snack products were enriched with rice bran (RB) at 10% and 15%. A co-rotating twin-screw extruder was used with a feed moisture content of 16 g 100 g−1, a screw speed of 240 r.p.m. and four heating sections of the barrel (100, 140, 150 and 150 °C). The impact of RB inclusion on nutritional profile, starch digestion, physicochemical and textural properties of snack products was evaluated. RB-enriched extrudates showed a lower specific volume and hardness and higher crispness than control. RB at 15% gave a water-holding capacity lower than control. Rheology of extrudate dispersions indicated an increase in elastic interactions and solid-like behaviour with RB supplementation. Differences in rheological properties resulted in attenuation of predictive glycaemic response for RB-enriched snacks.  相似文献   
7.
During whey powder production, the feed is subjected to several heat treatments which can cause lactosylation of proteins. In this study, lactosylation of whey proteins was evaluated in spray-dried powders before and after storage by varying the native protein fraction as well as the serum protein/lactose ratio in the powders. The lactosylation of native α-lactalbumin and β-lactoglobulin in the powders before storage was not affected to a large extent by the protein denaturation or if the feed had been heat treated in a high or low lactose environment. After storage (relative humidity of 23.5%, 30 °C, 25 days), the kinetic of lactosylation tended to increase with increasing native protein fraction and bulk protein content in the powders. An explanation could be that proteins dissolved in the lactose glassy structure might have a lower reactivity, while proteins present in the protein glassy structure with dissolved lactose may display higher lactosylation reactivity.  相似文献   
8.
The health benefits of human milk oligosaccharides (HMOs) make them attractive targets as supplements for infant formula milks. However, HMO synthesis is still challenging and only two HMOs have been marketed. Engineering glycoside hydrolases into transglycosylases may provide biocatalytic routes to the synthesis of complex oligosaccharides. Lacto-N-biosidase from Bifidobacterium bifidum (LnbB) is a GH20 enzyme present in the gut microbiota of breast-fed infants that hydrolyzes lacto-N-tetraose (LNT), the core structure of the most abundant type I HMOs. Here we report a mutational study in the donor subsites of the substrate binding cleft with the aim of reducing hydrolytic activity and conferring transglycosylation activity for the synthesis of LNT from p-nitrophenyl β-lacto-N-bioside and lactose. As compared with the wt enzyme with negligible transglycosylation activity, mutants with residual hydrolase activity within 0.05% to 1.6% of the wild-type enzyme result in transglycosylating enzymes with LNT yields in the range of 10–30%. Mutations of Trp394, located in subsite -1 next to the catalytic residues, have a large impact on the transglycosylation/hydrolysis ratio, with W394F being the best mutant as a biocatalyst producing LNT at 32% yield. It is the first reported transglycosylating LnbB enzyme variant, amenable to further engineering for practical enzymatic synthesis of LNT.  相似文献   
9.
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号