首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
水利工程   3篇
自动化技术   2篇
  2021年   2篇
  2014年   1篇
  2013年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 8 毫秒
1
1.
Climate change has the potential to alter the physical and chemical properties of water in the Great Lakes Basin, in turn impacting ecological function. This study synthesizes existing research associated with the potential effects of a changing climate on the quality and quantity of groundwater in the Great Lakes Basin. It includes analyses of impacts on (1) recharge, (2) groundwater storage, (3) discharge and groundwater-surface water (GW-SW) interactions, (4) exacerbating future urban development impacts on groundwater, (5) groundwater quality, and (6) ecohydrology.Large spatial and temporal (i.e., seasonal) variability in groundwater response to climate change between regions is anticipated. Most studies combine field observations with modelling, but many have focused only on small/medium basins. At these small scales, groundwater systems are generally projected to be fairly resilient to climate change impacts. However, modelling studies of larger basins (e.g., Grand River, Saginaw Bay, Maumee River) predict an increase in groundwater storage. Uncertainty in model simulations, particularly from climate models that are used to force hydrological models, is a major challenge. There have been too few studies to date that investigate the interplay of climate change and groundwater quality in the Great Lakes Basin to draw conclusions about future groundwater quality and ecohydrology.A summary of methods, models, and technology is provided. Model uncertainty has become an increasingly important topic and is also discussed. The study concludes with a synthesis of the main science needs to understand groundwater impacts in order to adapt to a changing climate in the Great Lakes Basin.  相似文献   
2.
Since 2016 we have studied the largest interdunal wetlands/slack lying within a deflated parabolic dune east of Lake Michigan. Geologic cross-sections show ∼ 15 m of sand and gravel beneath the dunes, creating an aquifer hydraulically connecting Lake Michigan-Huron (MH) with the water table/shallow groundwater influencing the slack. Lake Michigan-Huron (MH) water levels have risen ∼ 1 m from 2016 to 2020, increasing water levels within and around the slack ∼ 1 m. Color-infrared images and vegetation quadrat sampling show water appearing, then significantly expanding with the main slack and upland/dune vegetation transitioning to wetland vegetation in response to this rise. Monitoring well data show slack water levels rise in spring as Lake MH rises. Levels drop as the growing season begins while Lake MH continues to rise through summer. Short-term slack water level increases occur due to local rain events, but significant water level declines follow due to evapotranspiration. Slack water levels begin to rise again in late summer and into fall as the end of the growing season arrives, evapotranspiration decreases, and heavier, more frequent rain events occur. Together, these factors push slack water levels to their highest point of the year while Lake MH levels are decreasing. In late fall–winter, slack water levels drop in concert with Lake MH levels. Climate change effects, increased transpiration from higher temperatures, summer drought, and greater variability in lake level fluctuations, may make it more difficult to maintain wet growing conditions for hydrophytic vegetation. Hence, climate change poses risks to the existence of this imperiled ecosystem.  相似文献   
3.
One major challenge in water resource management is the estimation of evapotranspiration losses from seasonally managed wetlands. Quantifying these losses is complicated by the dynamic nature of the wetlands' areal footprint during the periods of flood-up and drawdown. We present a data-lean solution to this problem using an example application in the San Joaquin Basin, California. Through analysis of high-resolution Landsat Enhanced Thematic Mapper Plus (ETM+) satellite imagery, we develop a metric to better capture the extent of total flooded wetland area. The procedure is validated using year-long, continuously-logged field datasets for two wetlands within the study area. The proposed classification which uses a Landsat ETM + Band 5 (mid-IR wavelength) to Band 2 (visible green wavelength) ratio improves estimates by 30–50% relative to previous wetland delineation studies. Requiring modest ancillary data, the study results provide a practical and efficient option for wetland management in data-sparse regions or un-gauged watersheds.  相似文献   
4.
Line Gordon  Carl Folke 《国际水》2013,38(2):178-184
Abstract

This paper introduces a new perspective on water resources emphasizing the role of water vapor flows for human well-being. The connections between freshwater and ecosystem services in terrestrial environments are addressed, particularly the role of freshwater for the biota that sustains the flow of ecosystem services and the role of the biota that modifies freshwater flows. First, the water dependence of terrestrial ecosystem services and food production are analyzed. Secondly, two examples of unintentional, large-scale, water-mediated cascading effects related to ecosystem services that result from local, uncoordinated decisions in Australia and South Africa are discussed. These two countries are taking the lead in the management of freshwater flows and terrestrial ecosystem services. Issues including potential conflicts of interest and trade-offs between food (or timber) production and ecosystem services at the catchment scale are taken into account. A world-wide, intentional ecohydrological landscape approach to handle these issues is suggested. One important step towards a more integrated approach to freshwater is the development of flexible institutional structures.  相似文献   
5.
Near real-time vegetation indices derived from MODIS (MODerate resolution Imaging Spectroradiometer) observations (http://modis.gsfc.nasa.gov) provide a first opportunity to monitor ecohydrological systems globally at a spatial resolution consistent with biophysical processes at the field scale. Here, we present work toward the quantitative estimation of the uncertainty associated with MODIS Gross Primary Productivity (GPP), an end-product that depends on several MODIS derived vegetation indices. GPP products, available at 8-day and 1-km resolutions, were evaluated in two representative tropical ecosystems: a mixed forest site in the humid tropics (the Marsyandi river basin in the Nepalese Himalayas), and an open shrubland site in a semi-arid region (the Sonora river basin in northern Mexico). The MODIS-GPP products were compared against simulations made with a process-based biochemical-hydrology model driven by flux tower meteorological observations. Whereas the temporal march of vegetation indices and GPP products is consistent between the model and the algorithm, our study indicates that that there is a positive bias in the case of the mixed forest biome in the Marsyandi basin, and a negative bias in the case of open shrublands in the Sonora basin. We examined the error contribution from the DAO meteorological data used in the standard MODIS GPP products. The bias between the GPP estimates using DAO and tower meteorology is − 2.77 gC/m2/day (i.e., − 77% of the mean of the tower-based GPP) in the Marsyandi, and 0.33 gC/m2/day (i.e., 18% of the mean of the tower-based GPP) in Sonora. Analysis of the temporal evolution of the discrepancies between the model and the MODIS algorithm points to the need for examining the light use efficiency parameterization, especially with regard to the representation of nonlinear functional dependencies on vapor pressure deficit (VPD), photosynthetically available radiation (PAR), and seasonal evolution of the productive capacity of vegetation as influenced by water stress.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号