首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
轻工业   1篇
水利工程   2篇
石油天然气   1篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Seafood poisoning outbreaks can be caused by marine biotoxins which are naturally produced by harmful algal blooms. To minimize the risk of acute intoxications due to consumption of contaminated seafood a proper monitoring program must be in place. In recent decades several directives have been laid down by the European Commission to regulate known toxins, reassess their regulatory limits and update their reference detection methods. However, a revision of the seafood organisms that can act as toxin vectors has not been carried out. The control system has been designed based on physiological specificities of live bivalve mollusks. Although the prescribed controls in EC regulation 854/2004 apply to echinoderms, tunicates and marine gastropods, several difficulties are posed to a cost-effective monitoring program for these quite diverse and non-analogous groups of seafood organisms. Echinoderms, tunicates and marine gastropods are frequently secondary target species for toxins surveillance. In this study, the potential of non-bivalve organisms as toxin vectors and their threat for public health is evaluated based on their feeding behavior (i.e. filter-feeders, herbivores, predators), growth and metabolic rates, motile capacity and dynamics of toxin accumulation/elimination. A summary of previous reports on toxin accumulation and human incidents is presented to highlight the seafood species of higher risk to consumers, including crustaceans that are not listed in the EU directives for toxins monitoring and should be strongly considered as potent vectors of biotoxins to humans. Finally, the challenges in terms of sampling efforts and analytical determination for the regular surveillance of biotoxins in non-bivalve vectors are discussed.  相似文献   
2.
Lake Erie western basin (WB) cyanobacterial blooms are a yearly summer occurrence; however, blooms have also been reported in the offshore waters of the central basin (CB), and very little is known about what drives these blooms or their potential for cyanobacterial toxins. Cyanobacteria Index was quantified using MODIS and MERIS data for the CB between 2003 and 2017, and water samples were collected between 2013 and 2017. The goals were to 1) quantify cyanobacteria, 2) determine environmental drivers of CB blooms, and 3) determine the potential for cyanobacterial toxins in the CB. Dolichospermum (Anabaena) occurred in the CB during July before the onset of the WB bloom, and then in August and September, the cyanobacteria community shifted towards Microcystis. The largest Dolichospermum blooms (2003, 2012, 2013, and 2015) were associated with reduced water clarity (Secchi disk depth?<?4?m), whereas large CB Microcystis blooms (2011 and 2015) were associated with large WB blooms. Dolichospermum blooms occurred in high nitrate concentrations (>20?μmol/L) and high nitrogen-to?phosphorus ratios (>100), which indicate nutrient concentrations or ratios did not select for Dolichospermum. Additionally, the sxtA gene, but not mcyE or microcystins, were detected in the CB during July 2016 and 2017. The mcyE gene and microcystins were detected in the CB during August 2016 and 2017. The results indicate the CB's potential for cyanotoxins shifts from saxitoxins to microcystins throughout the summer. Continued monitoring of cyanobacteria and multiple cyanobacterial toxins is recommended to ensure safe drinking water for CB coastal communities.  相似文献   
3.
The paralytic shellfish poisoning (PSP) toxin producer Gymnodinium catenatum produces several hydrophobic analogues of saxitoxin (STX). These are poorly studied due to their recent discovery and lack of standards. It was previously observed these hydrophobic analogues could be partially hydrolysed, loosing its benzoate moiety during alkaline oxidation to obtain fluorescent products measurable by HPLC analysis. The hydrolysis reaction was further explored to study two practical aspects. One was the indirect measurement of these compounds through its hydrolysis products: the decarbamoyl analogues of STX. The second one was to simplify standard production of decarbamoyl analogues, which are commonly found in contaminated shellfish products.  相似文献   
4.
While algal blooms are common in eutrophic lakes, blooms can also occur in tributaries that load nutrients into the lake. We sampled six sites along a 122-km stretch of the Maumee River May through October 2018 and 2019 at weekly to biweekly intervals to determine if algal blooms occur, in particular toxic cyanobacteria, and to provide insights on potential environmental drivers of blooms. Samples were analyzed for concentrations of potamoplankton (=riverine phytoplankton), chlorophyll a, nutrients, cyanobacterial toxins, microcystins and saxitoxins, and cyanotoxin genes (mcyE and sxtA). Extreme precipitation in 2019 resulted in more high discharge events during 2019 than in 2018. Chlorophyll a ranged from 50 µg/L to 300 µg/L during periods of low discharge (<50 m3/s), and green algae and diatoms accounted for the majority of the chlorophyll a. In both years, cyanobacteria comprised a low proportion of all chlorophyll a, usually<20 %, but microcystins and saxitoxins were detectable in 38.7 % and 16.7 % samples, respectively, and mcyE and sxtA were detected in 36.2 % and 59.7 % samples, respectively. Therefore, cyanotoxins were present even when cyanobacteria were not at bloom densities. Chlorophyll a, cyanotoxin genes, and microcystins negatively correlated with discharge rate measured on the date of sample collection. Together our results suggest that cyanotoxins can occur in any portion of the Maumee River during low discharge conditions. Climate change is expected to reduce precipitation during the warm summer months in the Maumee River watershed and thus possibly increase the frequency of low discharge conditions that favor cyanobacteria.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号