首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31790篇
  免费   1126篇
  国内免费   778篇
电工技术   1306篇
技术理论   7篇
综合类   1346篇
化学工业   3421篇
金属工艺   1177篇
机械仪表   2688篇
建筑科学   2757篇
矿业工程   851篇
能源动力   2753篇
轻工业   1388篇
水利工程   3358篇
石油天然气   1392篇
武器工业   159篇
无线电   1355篇
一般工业技术   1542篇
冶金工业   1721篇
原子能技术   558篇
自动化技术   5915篇
  2024年   34篇
  2023年   299篇
  2022年   576篇
  2021年   628篇
  2020年   582篇
  2019年   520篇
  2018年   509篇
  2017年   618篇
  2016年   642篇
  2015年   781篇
  2014年   1426篇
  2013年   1704篇
  2012年   1686篇
  2011年   2358篇
  2010年   1809篇
  2009年   1893篇
  2008年   1682篇
  2007年   2146篇
  2006年   2003篇
  2005年   1871篇
  2004年   1525篇
  2003年   1454篇
  2002年   1183篇
  2001年   896篇
  2000年   753篇
  1999年   802篇
  1998年   608篇
  1997年   495篇
  1996年   428篇
  1995年   408篇
  1994年   298篇
  1993年   204篇
  1992年   180篇
  1991年   125篇
  1990年   102篇
  1989年   96篇
  1988年   82篇
  1987年   63篇
  1986年   39篇
  1985年   45篇
  1984年   34篇
  1983年   17篇
  1982年   28篇
  1981年   13篇
  1980年   14篇
  1979年   12篇
  1978年   13篇
  1977年   6篇
  1975年   2篇
  1964年   1篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
1.
Electrocatalytic water splitting is an important method to produce green and renewable hydrogen (H2). One of the hindrances for wide applications of electrocatalysis in H2 production is the lack of freshwater resources. Comparatively, seawater splitting has become an effective approach for large-scale H2 production due to its abundant reserves. However, the increased complexity of seawater content emerged more problems in electrocatalytic seawater splitting. Recently, various strategies have been reported on improving the performance of electrocatalysts applied in seawater. Herein, this review firstly analyzed the mechanisms and challenges of electrocatalytic seawater splitting to evolve H2, and summarized the recent progress on H2 production in electrocatalytic seawater splitting. Furthermore, suggestions for future work have been provided for guidance.  相似文献   
2.
‘Renewable energy is an essential part of our strategy of decarbonization, decentralization, as well as digitalization of energy.’ – Isabelle Kocher.Current climate, health and economic condition of our globe demands the use of renewable energy and the development of novel materials for the efficient generation, storage and transportation of renewable energy. Hydrogen has been recognised as one of the most prominent carriers and green energy source with challenging storage, enabling decarbonization. Photocatalytic H2 (green hydrogen) production processes are targeting the intensification of separated solar energy harvesting, storage and electrolysis, conventionally yielding O2/H2. While catalysis is being investigated extensively, little is done on bridging the gap, related to reactor unit design, optimisation and scaling, be it that of material or of operation. Herein, metals, oxides, perovskites, nitrides, carbides, sulphides, phosphides, 2D structures and heterojunctions are compared in terms of parameters, allowing for efficiency, thermodynamics or kinetics structure–activity relationships, such as the solar-to-hydrogen (STH). Moreover, prominent pilot systems are presented summarily.  相似文献   
3.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
4.
Relatively low efficiency is the biggest obstacle to the popularization of water electrolysis, which is a particularly feasible way to produce super-pure hydrogen. Imposing a magnetic field can increase the hydrogen production efficiency of water electrolysis. However, the enhancement's detailed mechanism still lacks an insightful understanding of the bubbles' micro vicinity. Our recent work aims to understand why the micro-magnetohydrodynamic (MHD) convection hinders single bubbles' detachment on the microelectrode. A water electrolysis experiment by microelectrode is performed under an electrode-normal magnetic field, and dynamic analysis of the single bubble growing on microelectrodes is performed. The variation of bubble diameter with time in the presence or absence of the magnetic field was measured, and the forces acting on the bubble were quantified. The result shows that the micro-MHD convection, induced by Lorentz force, can give rise to a downward hydrodynamic pressure force that will not appear in large-scale MHD convection. This force can be of the same magnitude as the surface tension, so it dramatically hinders bubbles' detachment. Besides, the Kelvin force provides a new potential way for further improving the efficiency of water electrolysis.  相似文献   
5.
Utilization of 3D nanostructured Pt cathodes could obviously improve performances of proton exchange membrane fuel cells (PEMFCs) owing to the reduced tortuosity and the bi-continuous nanoporous structure. However, these cathodes usually suffer from the flooding problem ascribed to the ionomer-free and nanoscale pores which are more susceptible to water condensation. In this paper, ultra-thin nanoporous metal films (100 nm) were utilized to construct PEMFC cathodes and independent transport channels were designed separately for water and gas aiming at the flooding problem. Nanoporous gold (NPG) film was used as the model support for loading Pt nanoparticles owing to its controllable and stable structure. After optimizing the polytetrafluoroethylene (PTFE) content and carbon loading in the gas diffusion layer (GDL), plasma treatment under O2 atmosphere was used to pattern the GDL with independent water transport channels. The obtained liquid permeation coefficients and oxygen gains demonstrated the obviously improved water and O2 transport. By using a home-made optimized GDL and a nanoporous film cathode with pore size ~60 nm, the flooding problem could be facilely solved. With a Pt loading of ~16 μg cm?2, this 3D nanostructured cathode exhibits a PEMFC performance of ~957 mW cm?2 at 80 °C. The Pt power efficiency is about 4 times higher than that of the commercial Pt/C cathode (50 μg cm?2, 756 mW cm?2). Obviously, this study provides a simple but effective methodology to solve the water flooding problem in the ultra-thin nanoporous film cathodes which is applicable for other types of 3D nanostructured PEMFC cathodes.  相似文献   
6.
Three-dimensional Bödewadt flow (fluid rotates at a large enough distance from the stationary plate) of carbon nanomaterial is examined. Single walled and multi walled CNTs are dissolved in water and gasoline oil baseliquids. Darcy-Forchheimer porous medium is considered. Stationary disk is further stretched linearly in radial direction. Heat transfer effect is examined in presence of radiation and convection. Effect of viscous dissipation is accounted. Entropy generation rate is studied. By using adequate transformation (von Kármán relations), the flow field equations (PDEs) are transmitted into ODEs. Solutions to these ODEs are constructed via implementation of shooting method (bvp4c). In addition to Entropy generation rate, Bejan number, heat transfer rate (Nusselt number), skin friction and temperature of fluid are examined through involved physical parameters. Axial component of velocity intensifies with increment in nanoparticles volume fraction and ratio of stretching rate to angular velocity parameter while it decays with higher porosity parameter. Higher nanoparticles volume fraction and porosity parameter lead to decay in radial as well as tangential component of velocity. However it enhances with higher ratio of stretching rate to angular velocity parameter. Temperature of fluid directly varies with higher ratio of stretching rate to angular velocity parameter, radiation parameter, Eckert number, Biot number and nanoparticles volume fraction. Rate of Entropy generation is reduced with higher estimations of porosity parameter, nanoparticles volume fraction and radiation parameter. Skin friction coefficient decays with higher porosity parameter and ratio of stretching rate to angular velocity parameter. Intensification in porosity parameter, nanoparticles volume fraction and Biot number leads to higher Nusselt number. Prominent impact is shown by multiple-walled CNTs with gasoline oil basefluid than single-walled CNTs with water basefluid.  相似文献   
7.
刘少龙  李仑升  曹琳 《电子测试》2020,(8):26-27,51
本文利用TI公司TMS320F28335芯片高效的浮点运算能力,结合片上丰富的外设,设计并实现了一种具有高可靠性的智能电源控制单元。该控制单元周期性地对各片上外设进行自检维护,完成多路负载通道控制、电压、电流的实时监控,并对故障进行指示、处理和上报,同时提供人机交互界面更新状态信息。经过验证,该控制单元工作稳定,具备良好的工程应用价值。  相似文献   
8.
This paper investigates a renewable energy resource’s application to the Load–Frequency Control of interconnected power system. The Proportional-Integral (PI) controllers are replaced with Proportional-Integral Plus (PI+) controllers in a two area interconnected thermal power system without/with the fast acting energy storage devices and are designed based on Control Performance Standards (CPS) using conventional/Beta Wavelet Neural Network (BWNN) approaches. The energy storing devices Hydrogen generative Aqua Electroliser (HAE) with Fuel cell and Redox Flow Battery (RFB) are incorporated to the two area interconnected thermal power system to efficiently damp out the electromechanical oscillations in the power system because of their inherent efficient storage capacity in addition to the kinetic energy of the generator rotor, which can share the sudden changes in power requirements. The system was simulated and the frequency deviations in area 1 and area 2 and tie-line power deviations for 5% step- load disturbance in area 1 are obtained. The comparison of frequency deviations and tie-line power deviations of the two area interconnected thermal power system with HAE and RFB designed with BWNN controller reveals that the PI+ controller designed using BWNN approach is found to be superior than that of output response obtained using PI+ controller. Moreover the BWNN based PI+ controller exhibits a better transient and steady state response for the interconnected power system with Hydrogen generative Aqua Electroliser (AE) unit than that of the system with Redox Flow Battery (RFB) unit.  相似文献   
9.
Fault detection and isolation in water distribution networks is an active topic due to the nonlinearities of flow propagation and recent increases in data availability due to sensor deployment. Here, we propose an efficient two-step data driven alternative: first, we perform sensor placement taking the network topology into account; second, we use incoming sensor data to build a network model through online dictionary learning. Online learning is fast and allows tackling large networks as it processes small batches of signals at a time. This brings the benefit of continuous integration of new data into the existing network model, either in the beginning for training or in production when new data samples are gathered. The proposed algorithms show good performance in our simulations on both small and large-scale networks.  相似文献   
10.
通过分析A公司在研发项目范围管理中所存在问题,提出研发项目范围管理的方法及其在C产品的应用实例,通过运用研发项目范围管理的工具和方法,改善产品开发流程,从而缩短新产品开发周期,提高响应市场的速度,并提高企业研发项目的管理能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号