首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
化学工业   5篇
建筑科学   12篇
轻工业   1篇
水利工程   43篇
自动化技术   1篇
  2022年   4篇
  2021年   1篇
  2020年   7篇
  2019年   1篇
  2018年   8篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1983年   2篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
Dreissenid mussel veligers compose a substantial component of pelagic biomass in the Great Lakes, yet their dynamics are poorly understood. To evaluate seasonal, spatial, and inter-annual variation in veliger density, we used a 64-μm mesh plankton net (2008, 2013–2016) and a 153-μm mesh plankton net (2007–2016) to collect dreissenid veligers at nearshore (15–25?m depth), transitional (45?m) and offshore (93–110?m) sites in southeast Lake Michigan during March–December. We also evaluated trends in density of recently settled mussels relative to veliger abundance and the density of the standing stock of adult mussels. Veliger density peaked during both summer and fall at all sites, but peak densities in summer were generally higher nearshore, whereas peak densities in the fall were generally higher offshore. The density of veligers in the 153-μm net was overall 28% of that in the 64-μm net, but there was high variability in this comparison among months. Smaller veligers were much more abundant in the 64-μm net, but there was little difference in the size distribution and abundance between nets for the 210–300?μm size classes. Thus, the 153-μm net could still be a useful tool for assessing density trends of larger veligers just prior to their settlement. Newly settled mussels (≤2?mm) were most abundant in summer or fall at the nearshore and offshore sites but were nearly absent at the transitional site despite the high density of veligers there. Factors other than veliger density must play an important role in mussel recruitment.  相似文献   
2.
The influences of the Samarra impoundment on the ecology of the downstream sector of the river Tigris are investigated. Zooplankton were collected monthly from July 1987 to July 1988. It was found that zooplankton were most abundant during high river discharges in March. During the month of low river discharge, September, the zooplankton population was greatly reduced immediately below the barrage and remained so to the last downstream station. Several factors seem to explain such differences. The high discharge from the impoundment was found to be the dominating factor and may flush the small backwaters in which zooplankton were abundant, thus increasing the population in the river. Zooplankton species vary in their ability to sustain populations in the river, variations which are due mainly to species-specific characteristics.  相似文献   
3.
As on land, plants are the real producers in the sea, and on them depend all marine living resources and the basic sustainability of ecosystems. Primary production is performed by chlorophyll-bearing plants ranging from the tiny phytoplankton to the giant kelps through the process ofphotosynthesis. Zooplankton play an important role as secondary producers, and together with phytoplankton they support the vast assemblages of marine food chain with all their diversity and complexity. Data on chlorophyll pigments, phytoplankton and zooplankton are regarded as a sound basis for environmental appraisal of ecosystems. This paper presents a set of data collected from the Saudi Arabian coastal waters near the desalination plants in AI-Jubail. Materials were collected from six different sites covering the intake and discharge zones during cruises carried out in 1997-1998. Analyses of chlorophyll pigments were made using the spectrophotometric method. Plankton samples were collected using a Nansen plankton net with a mesh size of 75 μ and analyzed following standard procedures. Chlorophyll a, b, c and phaeophytin are the most commonly occurring pigments in seawater. Their concentrations showed wide fluctuation. The phytoplankton community was composed of 35 genera representing the Diatoms, Dinoflagellates and blue- green algae. Zooplankton were composed ofProtozoa, Coelenterata, Ctenophora, Aschelminthes, Annelida, Mollusca, Arthropoda, Echinodermata and Chordata. Arthropoda, represented by Cladocera, Copepoda and Crustacean larvae, formed the largest group followed by Chordata. The distribution of phyto- and zooplankton was examined and discussed on a seasonal, annual and inter-annual basis. In terms of species, overall species composition was not affected by plant discharge. The study brings out a greater understanding of the changes experienced by biotic communities as a result of impingement, entrainment and entrapment consequent to water passage through the plant structures. The study reflects the ecological relationships that the phytoplankton and the zooplankton of the region possess with respect to intake and discharge. Further, the study has brought to light a very redeeming feature of the ecosystem to sustain its productivity and planktonic abundance. It was observed that seawater temperature, conductivity and total suspended solids did not act as limiting factors. Besides throwing much light on the little known biological aspects of desalination sites, the data provided constitute a significant addition to the knowledge base of marine living resources in an industrial zone of Gulf coastal waters.  相似文献   
4.
Changes in the crustacean zooplankton community composition and abundance in Lake Winnipeg (1969–2006) provide a rare opportunity to examine their response to environmental changes in the largest naturally eutrophic lake on the Canadian prairies. Since 1929, zooplankton species composition in Lake Winnipeg has changed little except for the addition of the invasive cladoceran, Eubosmina coregoni in 1994. The dominant taxa in the lake in summer include: Leptodiaptomus ashlandi, Acanthocyclops vernalis, Diacyclops thomasi, Daphnia retrocurva, Daphnia mendotae, Diaphanosoma birgei, Eubosmina coregoni, and Bosmina longirostris. Climate-accelerated nutrient loading to southern Lake Winnipeg over the last two decades has led to increased phytoplankton abundance and higher frequency of cyanobacterial blooms especially in its northern basin. Crustacean zooplankton have likewise increased especially in the North Basin, but less so in the more nutrient rich South Basin, possibly as a consequence of higher densities of pelagic planktivorous fish and light-limited primary production compared with the more transparent North basin (Brunskill et al., 1979, 1980). Calanoid copepods play a larger role in the South basin food web in contrast to cyclopoid copepods and Cladocera in the North basin. The study begins to fill the recognized gap in understanding of Lake Winnipeg's food web structure and provides a baseline for evaluating ongoing changes in the zooplankton community with the arrival of new non-indigenous taxa, e.g. Bythotrephes longimanus and Dreissena polymorpha. It reinforces previous work demonstrating that zooplankton provide valuable indices toward evaluating the health of an ecosystem.  相似文献   
5.
对A水厂先炭后砂及B水厂先砂后炭两种臭氧-生物活性炭工艺各环节的小型生物分布情况进行了分析,并对两种工艺的出厂水CODMn进行了检测。研究结果表明,以浮游植物、浮游动物为代表的微型生物群落在经过两种不同深度处理工艺后,小型生物的去除率达到了90%~100%,只要根据季节控制冲洗频率和强度,加强工艺管理,生物泄漏能得到有效控制,出水水质稳定。此外,B水厂工艺相对于A水厂工艺有明显的优势,处理效果好,活性炭的寿命增加,从有机物CODMn的去除效果来看,尽管B水厂比A水厂早运行2年,但全程去除率要优于A水厂的去除率。  相似文献   
6.
Mercury distribution and speciation in Lake Balaton, Hungary   总被引:6,自引:0,他引:6  
The distribution and speciation of mercury in air, rain, lake water, sediment, and zooplankton in Lake Balaton (Hungary) were investigated between 1999 and 2002. In air, total gaseous mercury (TGM) ranged from 0.4 to 5.9 ng m(-3) and particulate phase mercury (PPM) from 0.01 to 0.39 ng m(-3). Higher concentrations of both TGM and PPM occurred during daytime. Higher concentrations of PPM occurred in winter. In rain and snow, total mercury ranged from 10.8 to 36.7 ng L(-1) in summer but levels up to 191 ng L(-1) in winter. Monomethylmercury (MMHg) concentrations ranged from 0.09 to 1.26 ng L(-1) and showed no seasonal variations. Total Hg in the unfiltered lake water varied spatially, with concentrations ranging from 1.4 to 6.5 ng L(-1). Approximately 70% of the total Hg is dissolved. MMHg levels ranged from 0.08 to 0.44 ng L(-1) as total and from 0.05 to 0.37 ng L(-1) in the dissolved form. Lower Hg concentrations in the water column occurred in winter. In suspended particulate matter and in sediment, total mercury ranged from 9 to 160 ng g(-1) dw, and MMHg ranged from 0.07 to 0.84 ng g(-1) dw. In zooplankton, an average mercury level of 31.0+/-6.8 ng g(-1) dw occurred, with MMHg accounting for approximately 17%. In sediments, suspended-matter- and zooplankton-high Hg and MMHg levels occurred at the mouth of the River Zala, but, in the lake, higher concentrations occurred on the Northern side, and an increasing trend from north-west to north-east was observed. In general, regarding Hg, Lake Balaton can be considered as a relatively uncontaminated site. The high-pH and well-oxygenated water as well as the low organic matter content of the sediment does not favour the methylation of Hg. In addition, bioconcentration and bioaccumulation factors are relatively low compared to other aquatic systems.  相似文献   
7.
The significance of zooplankton in the transport and fate of pathogenic organisms in drinking water is poorly understood, although many hints of the role of predation in the persistence of microorganisms through water treatment processes can be found in literature. The objective of this study was to assess the impact of predation by natural zooplankton on the transport and fate of protozoan (oo)cysts in granular activated carbon (GAC) filtration process. UV-irradiated unlabelled Cryptosporidium parvum and Giardia lamblia (oo)cysts were seeded into two pilot-scale GAC filtration columns operated under full-scale conditions. In a two-week period after seeding, a reduction of free (oo)cysts retained in the filter bed was observed. Zooplankton was isolated from the filter bed and effluent water on a 30 μm net before and during the two-week period after seeding; it was enumerated and identified. Rotifers, which are potential predators of (oo)cysts, accounted for the major part of the isolated zooplankton. Analytical methods were developed to detect (oo)cysts internalized in natural zooplankton isolated from the filter bed and effluent water. Sample sonication was optimized to disrupt zooplankton organisms and release internalized microorganisms. (Oo)cysts released from zooplankton after sonication were isolated by IMS and stained (EasyStain™) for microscopic counting. Both Cryptosporidium and Giardia (oo)cysts were detected in association with zooplankton in the filter bed samples as well as in the effluent of GAC filters. The results of this study suggest that predation by zooplankton can play a role in the remobilization of persistent pathogens such as Cryptosporidium and Giardia (oo)cysts retained in GAC filter beds, and consequently in the transmission of these pathogens in drinking water.  相似文献   
8.
To test how environmental conditions in the Arctic and the resulting ecological adaptations affect accumulation of persistent organic pollutants (POPs) in the marine food web, bioaccumulation of four polychlorinated biphenyls (PCBs) in an arctic (Barents Sea 77 °N-82 °N) and a temperate marine (Baltic Sea 54 °N-62 °N) food web were compared. Three different trophic levels were studied (zooplankton, fish, and seal), representing the span from first-level consumer to top predator. Previously published high-quality data on PCB water concentrations in the two areas were used for calculation of bioaccumulation factors (BAF). BAF was calculated as the ratio of the PCB concentration in the organism ([PCB]org; pg/kg lipid) to the dissolved water concentration (Cw; pg/L). The BAFArctic:BAFTemperate ratios were above 1 for all four PCB congeners in zooplankton (6.4-13.8) and planktivorous fish (2.9-5.0)), whereas the ratios were below 1 in seal. The mean ratio between arctic and temperate BAFs for all trophic levels and congeners (BAFArcti:BAFTemperate) was 4.8. When the data were corrected for the seawater temperature difference between the two ecosystems, the ratio was 2.0. We conclude that bioaccumulation differences caused by ecological or physiological adaptations of organisms between the two ecosystems were well within a water concentration variability of 50%. Further, our data support the hypothesis that lower seawater temperature lead to a thermodynamically favoured passive partitioning to organic matrices and thus elevated ambient BAFs in the Arctic compared to the Baltic Sea. This would imply that bioaccumulation in the Arctic may be described in the same way as bioaccumulation in temperate regions, e.g. by the use of mechanistic models parameterised for the Arctic.  相似文献   
9.
We assessed changes in Lake Ontario zooplankton biomass, production, and community composition before (1987–1991) and after (2001–2005) invasion-induced ecosystem changes. The ecosystem changes were associated with establishment of invasive dreissenid mussels and invasive predatory cladocerans (Bythotrephes and Cercopagis). Whole-lake total epilimnetic plus metalimnetic zooplankton production declined by approximately half from 42.45 (g dry wt?m−2? year−1) during 1987–1991 to 21.91 (g dry wt?m−2? year−1) in 2003 and averaged 21.01 (g dry wt?m−2? year−1) during 2001–2005. Analysis of two independent data sets indicates that the mean biomass and biomass proportion of cyclopoid copepods declined while the same measures increased for the invasive predatory cladocerans. Changes in means and proportions of all other zooplankton groups were not consistent between the data sets. Cyclopoid copepod biomass and production declined by factors ranging from 3.6 to 5.7. Invasive predatory cladoceran biomass averaged from 5.0% to 8.0% of the total zooplankton biomass. The zooplankton community was otherwise resilient to the invasion-induced disruption as zooplankton species richness and diversity were unaffected. Zooplankton production was likely reduced by declines in primary productivity but may have declined further due to increased predation by alewives and invasive predatory cladocerans. Shifts in zooplankton community structure were consistent with increased predation pressure on cyclopoid copepods by alewives and invasive predatory cladocerans. Predicted declines in the proportion of small cladocerans were not evident. This study represents the first direct comparison of changes in Lake Ontario zooplankton production before and after the invasion-induced disruption and will be important to food web-scale investigations of invasion effects.  相似文献   
10.
Zooplankton distributions are patchy due to multiple physical, chemical, and biological processes, including diel vertical migration (DVM) behavior. Heterogeneity in the offshore environment is difficult to study with net tows, but newer technologies measure finer-scale distributions. Here, we use laser optical plankton counter (LOPC) data, informed by net tows, to study distributions and DVM of zooplankton in offshore Lake Michigan during July and September 2015. Water column (5–60 m) zooplankton biomass varied by an order of magnitude among transects and a factor of two within individual transects (6–19 km distances); transect coefficients of variation (SD/mean) ranged from 7 to 22% (~0.5 km scale). Horizontal patterns in zooplankton biomass varied among size groups but were consistent from day to night, suggesting that processes driving heterogeneity persist for hours to days. Fine-scale LOPC data show that zooplankton often aggregate in thin layers (1–3 m) within the metalimnion, a feature undetectable by coarser net sampling. Although DVM was not consistently observed, some patterns emerged. Small zooplankton including copepodites, diaptomids (Leptodiaptomus ashlandi, L. minutus), and Diacyclops thomasi often migrated to surface waters at night, and large zooplankton (Limnocalanus macrurus) migrated upward at night in most cases. Beam attenuation coefficient (proxy for phytoplankton biomass) was a significant predictor for zooplankton mean depth (p < 0.001) although it explained more of the variation for night data (R2 = 0.72) than day data (R2 = 0.53). The heterogeneity observed in zooplankton distributions has implications for planktivorous fish feeding in the offshore zone, as prey density varies greatly with depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号