首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2847篇
  免费   920篇
  国内免费   77篇
电工技术   984篇
综合类   106篇
化学工业   1342篇
金属工艺   12篇
机械仪表   24篇
建筑科学   255篇
矿业工程   31篇
能源动力   669篇
轻工业   59篇
水利工程   35篇
石油天然气   23篇
武器工业   3篇
无线电   70篇
一般工业技术   128篇
冶金工业   34篇
原子能技术   3篇
自动化技术   66篇
  2024年   39篇
  2023年   107篇
  2022年   165篇
  2021年   355篇
  2020年   253篇
  2019年   221篇
  2018年   228篇
  2017年   225篇
  2016年   236篇
  2015年   269篇
  2014年   340篇
  2013年   239篇
  2012年   148篇
  2011年   156篇
  2010年   153篇
  2009年   145篇
  2008年   90篇
  2007年   104篇
  2006年   83篇
  2005年   57篇
  2004年   53篇
  2003年   35篇
  2002年   32篇
  2001年   22篇
  2000年   15篇
  1999年   11篇
  1998年   16篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   9篇
  1993年   9篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1951年   1篇
排序方式: 共有3844条查询结果,搜索用时 31 毫秒
1.
The exploitation of recycled carbonaceous catalysts from renewable biomass resources such as chitin is a crucial issue for the development of the sustainable society. In this article, the chitin-based N and O doped carbon microspheres (ChC) were fabricated by a simple dissolution, sol–gel transformation, and the carbonization methods. Subsequently, the novel magnetic Ag-Fe3O4@chitin-based carbon microspheres catalyst (MChC) was successfully constructed through the in situ redox reaction. The as-prepared MChC possessed rich micropores with high-surface area, and a narrow size distribution (50–120 μm). The Ag-Fe3O4 nanoparticles were immobilized through the interaction with C, N, and O atoms in the pores of MChC. The reduction of 4-nitrophenol was applied to evaluate the catalytic activity of MChC. 4-Nitrophenol (4-NP) could be fully reduced to 4-aminophenol (4-AP) in 5 min with the catalyst MChC-45. Moreover, MChC could be collected in solution with an external magnet in 8 s and remained relatively high-catalytic activity after 10 cycle times. This work provided novel ideas for the fabrication of doped carbon material from biomass and promoted its utilization in nanocatalytic applications.  相似文献   
2.
Hydrophilic polymer networks (hydrogels) based on sodium carboxymethylcellulose (NaCMC) and polycarboxylic acids (oxalic, succinic, citric and adipic) as cross-linking agents are synthesized by esterification reaction; one series of NaCMC hydrogels cross-linked with citric acid is prepared with acrylamide and acrylic acid (Aam/Aac) copolymers using the design of semi-interpenetrating polymer networks (semi-IPN), in order to increase their potential application for flocculation purposes. The Infrared spectroscopy (FTIR) of hydrogels confirms the esterification reaction between NaCMC and cross-linking agents. Results of swelling measurements show that citric acid in the amount of 15 wt% gives the hydrogels with the best absorption capacity. The results of Differential scanning calorimetry (DSC) and Thermal gravimetric analysis (TGA) show no significant difference in thermal properties of neat and semi-interpenetrating NaCMC hydrogels. The amorphous nature of hydrogels is confirmed by X-ray diffraction analysis (XRD). The results of flocculation study show that combination of NaCMC network and Aam/Aac copolymer with initial mass ratio of 10/90 creates a theoretical platform for the production of flocculant which could show high efficacy in purifying of water dominated by positively charged particles.  相似文献   
3.
An antibacterial peptide (AMP), i.e., nisin, was covalently bound to gelatin through a protein–protein coupling. Various reaction conditions were tested to study and optimize parameters of grafting e.g., orientation and density of AMP, which could impact the final antibacterial activity of the modified biopolymer. Modification was investigated by Fourier transform infrared (FT‐IR) spectroscopy and zeta potential. The antibacterial activity of the nisin‐enriched gelatin was evaluated against two staphylococci bacterial strains, i.e., Staphylococus epidermidis and Staphylococcus aureus. A higher activity was found for gelatin modified at pH = 7.4 revealing an influence of the nisin orientation on the protein antibacterial property. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41825.  相似文献   
4.
Neat poly (lactic acid) (PLA) and PLA/cassava bagasse (CB) composites were used to produce seedling tubes by extrusion and injection molding. The tubes were buried in simulated soil, and their biodegradation was investigated by weight loss, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). After 180 days, the composites' biodegradation was higher than neat PLA material, and the higher the CB content, the higher the biodegradation, which caused fissures and voids in the material. The biodegradation of PLA/CB composites increased the phosphorus content in the soil after 180 days. Composites of PLA with CB, an abundant agro-industrial residue in Brazil, are promising because they can reduce the environmental impact due to CB's proper destination, and the composites' costs and biodegradation are faster than pure PLA material. Both the faster biodegradation of the tube and the higher P content are advantageous for seedling tubes.  相似文献   
5.
Environmental concerns continue to pose the challenge to replace petroleum-based products with renewable ones completely or at least partially while maintaining comparable properties. Herein, rigid polyurethane (PU) foams were prepared using soy-based polyol for structural and thermal insulation applications. Cell size, density, thermal resistivity, and compression force deflection (CFD) values were evaluated and compared with that of petroleum-based PU foam Baydur 683. The roles of different additives, that is, catalyst, blowing agent, surfactants, and different functionalities of polyol on the properties of fabricated foam were also investigated. For this study, dibutyltin dilaurate was employed as catalyst and water as environment friendly blowing agent. Their competitive effect on density and cell size of the PU foams were evaluated. Five different silicone-based surfactants were employed to study the effect of surface tension on cell size of foam. It was also found that 5 g of surfactant per 100 g of polyol produced a foam with minimum surface tension and highest thermal resistivity (R value: 26.11 m2·K/W). However, CFD values were compromised for higher surfactant loading. Additionally, blending of 5 g of higher functionality soy-based polyol improved the CFD values to 328.19 kPa, which was comparable to that of petroleum-based foam Baydur 683.  相似文献   
6.
ABSTRACT

Design and implementation of an effective dissemination programme for decentralised renewable energy system necessitate an accurate estimate of its utilisation potential. Hence, in this study, an attempt has been made to develop frameworks to estimate the utilisation potential of decentralised renewable energy systems in the state of Uttarakhand in India. Estimations imply large resource, technical and economic potentials of the domestic solar water heater, solar home system, solar lantern, family size biogas plant and improved biomass cookstove in Uttarakhand. With higher impact on the purchasing power of households, prevailing soft loan scheme has been found to be more appropriate than a capital subsidy for promoting the usage of decentralised renewable energy systems.  相似文献   
7.
In this study, we aimed to develop an efficient synthesis and photopolymerization of acrylated methyl ricinoleate (AMR) for biomedical applications. During the first step of the synthesis, methyl ricinoleate (MR) and boric acid were esterified via azeotropic distillation in toluene. Afterward, MR–boric acid ester was acrylated with acrylic acid at 165 °C via a boric acid ester acidolysis reaction. The bulk photopolymerization of AMR was performed in the presence of the photoinitiator 2,2-dimethoxy-2-phenyl acetophenone (DMPA) under 365 nm UV irradiation. Even with the use of 0.4% DMPA, a 35% monomer conversion was achieved within 30 min. Moreover, AMR, the plant-oil-based monomer, was also copolymerized with N-isopropyl acrylamide to obtain thermoresponsive hydrogels on the glass surface for biomedical applications. The synthesized materials were characterized by Fourier transform infrared (FTIR) spectroscopy, 1H-NMR spectroscopy, and thermal characterization via thermogravimetric analysis (TGA) and differential scanning calorimetry techniques. The surfaces were characterized by FTIR and Energy Dispersive X-ray (EDS) spectroscopy. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47969.  相似文献   
8.
Limonene‐derived polycarbonate‐based alkyd resins (ARs) have been prepared by copolymerization of limonene dioxide with CO2, catalysed by a β‐diiminate zinc–bis(trimethylsilyl)amido complex, and subsequent chemical modification with soybean oil fatty acids using triphenylethylphosphonium bromide as the catalyst. This quantitative partial modification was realized via epoxy–carboxylic acid chemistry, affording ARs with higher oil lengths, lower polydispersities and higher glass transition temperatures (Tg) in comparison to a conventional polyester AR based on phthalic acid, multifunctional polyol pentaerythritol and soybean fatty acid. The novel limonene polycarbonate AR and the conventional polyester AR were evaluated as coatings and both the physical drying (without the presence of the oxidative drying accelerator Borchi® Oxy Coat) and chemical curing (with Borchi® Oxy Coat) processes of these coatings were monitored by measuring the König hardness and complex modulus development with time. A better performance was obtained for the alkyd paint containing polycarbonates modified with fatty acids (FA‐PCs), which showed a faster chemical drying, a higher König hardness and a higher Tg in coating evaluation, demonstrating that the fully renewable FA‐PCs are promising resins for alkyd paint applications. © 2019 Society of Chemical Industry  相似文献   
9.
Malic acid derived from fossil resources is currently applied in the food and beverage industries with a medium global production capacity. However, in the transition from a fossil-based to a bio-based economy, biotechnologically produced l -malic acid may become an important platform chemical with many new applications, especially in the field of biopolymers. In this review, currently used petrochemical production routes to dl -malic acid are outlined and insights into possible bio-based alternatives for microbial l -malic acid production are provided. Besides ecological reasons, the possibility to produce enantiopure l -malic acid by microbial fermentation is the biggest advantage over chemical synthesis. State-of-the-art and open challenges concerning production host engineering, substrate choice and downstream processing are addressed. With regard to production hosts, a literature overview is given covering the leading natural production strains of Aspergillus, Ustilago and Aureobasidium, as well as Escherichia coli as the most important engineered recombinant host. The utilization of renewable substrates as an alternative to glucose is emphasized in particular as a key aspect for a competitive bio-based production. Out of the alternative substrates discussed in this review, the industrial side-streams crude glycerol and molasses seem to be most promising for large-scale l -malic acid production. © 2019 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   
10.
Industry widely uses rotary valves and blow tanks for the pneumatic conveying of products, each having their pros and cons depending on the specific application. This article shows the differing results obtained when low-velocity conveying a product through a common pipeline using both a drop-through rotary valve and a bottom-discharge blow tank feeder. A number of issues arise in the rotary valve system, the main one being rotary valve air leakage. A blow tank system, on the other hand, does not leak, as it is an enclosed system. The experimental results show dramatic differences in product throughput. Further exploration leads to a novel modification being made to the rotary valve system in an attempt to increase its capacity. The result of this modification shows a slight increase in output tonnage, but still significantly less than that obtained from the blow tank.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号