首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9827篇
  免费   1189篇
  国内免费   601篇
电工技术   232篇
综合类   697篇
化学工业   1514篇
金属工艺   1664篇
机械仪表   322篇
建筑科学   1027篇
矿业工程   223篇
能源动力   1191篇
轻工业   719篇
水利工程   258篇
石油天然气   196篇
武器工业   83篇
无线电   623篇
一般工业技术   1937篇
冶金工业   509篇
原子能技术   71篇
自动化技术   351篇
  2024年   55篇
  2023年   308篇
  2022年   482篇
  2021年   517篇
  2020年   574篇
  2019年   520篇
  2018年   465篇
  2017年   524篇
  2016年   421篇
  2015年   421篇
  2014年   570篇
  2013年   688篇
  2012年   676篇
  2011年   663篇
  2010年   498篇
  2009年   512篇
  2008年   406篇
  2007年   503篇
  2006年   483篇
  2005年   339篇
  2004年   307篇
  2003年   259篇
  2002年   245篇
  2001年   192篇
  2000年   179篇
  1999年   146篇
  1998年   135篇
  1997年   120篇
  1996年   65篇
  1995年   60篇
  1994年   66篇
  1993年   52篇
  1992年   32篇
  1991年   29篇
  1990年   32篇
  1989年   20篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   13篇
  1984年   6篇
  1983年   5篇
  1982年   9篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Electrocatalytic water splitting is an important method to produce green and renewable hydrogen (H2). One of the hindrances for wide applications of electrocatalysis in H2 production is the lack of freshwater resources. Comparatively, seawater splitting has become an effective approach for large-scale H2 production due to its abundant reserves. However, the increased complexity of seawater content emerged more problems in electrocatalytic seawater splitting. Recently, various strategies have been reported on improving the performance of electrocatalysts applied in seawater. Herein, this review firstly analyzed the mechanisms and challenges of electrocatalytic seawater splitting to evolve H2, and summarized the recent progress on H2 production in electrocatalytic seawater splitting. Furthermore, suggestions for future work have been provided for guidance.  相似文献   
2.
‘Renewable energy is an essential part of our strategy of decarbonization, decentralization, as well as digitalization of energy.’ – Isabelle Kocher.Current climate, health and economic condition of our globe demands the use of renewable energy and the development of novel materials for the efficient generation, storage and transportation of renewable energy. Hydrogen has been recognised as one of the most prominent carriers and green energy source with challenging storage, enabling decarbonization. Photocatalytic H2 (green hydrogen) production processes are targeting the intensification of separated solar energy harvesting, storage and electrolysis, conventionally yielding O2/H2. While catalysis is being investigated extensively, little is done on bridging the gap, related to reactor unit design, optimisation and scaling, be it that of material or of operation. Herein, metals, oxides, perovskites, nitrides, carbides, sulphides, phosphides, 2D structures and heterojunctions are compared in terms of parameters, allowing for efficiency, thermodynamics or kinetics structure–activity relationships, such as the solar-to-hydrogen (STH). Moreover, prominent pilot systems are presented summarily.  相似文献   
3.
In this work, copper sulfide particles are synthesized with different Co doping concentrations such as 0, 1 and 5% at 80 °C by optimizing synthesis times from 1 to 3 h. Copper sulfide particles possess two structural phases of covellite CuS and digenite Cu9S5. The increase in synthesis time from 1 to 3 h increases the Cu9S5 phase growth and changes the morphology from flower to microsphere. The CuS synthesized with 0, 1 and 5% Co dopant concentrations demonstrate flower consisting of agglomerated nanosheets, microsphere and flower like microsphere. The elemental investigation substantiates Co ions presence in CuS microspheres. The A1g (LO) mode intensity is decreased with increase in Co dopant concentration confirming Co incorporation into CuS microsphere. The CuS synthesized with 0, 1, 5% Co dopants exhibit 322 mV, 305 mV and 289 mV to attain 100 mA/cm2 in 1 M KOH seawater. The CuS synthesized with 5% Co dopant demonstrates higher double layer capacitance (Cdl) of 173.9 mFcm?2 and lower charge transfer resistance (Rct) of 6.07 Ω with 78.84% retention after 10 h continuous stability than that of the other pristine (118.3 mFcm?2, 13.72 Ω) and 1% Co doped CuS microsphere (165.7 mFcm?2, 8.55 Ω) indicating more surface active site and rapid charge carrier transport, respectively.  相似文献   
4.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
5.
Seawater is the most abundant resource on earth, so developing cost-effective, highly durable corrosion resistance and efficient electrocatalysts are crucial to enhance seawater splitting. Herein, we prepared 3D bristlegrass-like Co-doped Ni2P (Co-Ni2P) composites supported on Ni foam (NF) through a facile solvothermal method combined and a subsequent phosphatization treatment. Benefiting from the unique structure, Co-Ni2P shows excellent electrocatalytic activity as an electrode material for both the hydrogen evolution reaction (HER, low overpotential of 116 mV at 50 mA cm?2) and oxygen evolution reaction (OER, low overpotential of 266 mV at 50 mA cm?2). Moreover, the as-prepared Co-Ni2P composites exhibit excellent stability and corrosion resistance in an alkaline medium. Density functional theory (DFT) calculations were employed to evaluate the H1 adsorption of Co-Ni2P, and the results proved the high catalytic activity for the HER. This study provides new materials with a unique morphology for overall water splitting.  相似文献   
6.
Equilibrium swelling and rheological tests were adopted to systematically investigate the effects of softener type and dosage on the crosslink densities. The results turned out that the chemical crosslink density could be distinguished from the physical crosslink density by comparing the results of equilibrium swelling and rheological tests. The liquid butadiene (LB) as a softener leads to the greatest reduction in crosslink density, followed by polyethylene wax (PW) and paraffinic oil (PO). The tensile strength decreases with increasing PO content while shows peak values with increase of LB and PW contents. The dependencies of chemical crosslink density on the aging time under 150°C are quite different for the three softeners, which can be expected from the double crosslinking networks consisting of small softener and large main crosslinking networks. Further investigation has been performed to correlate the tensile strength with chemical crosslink density of ethylene propylene diene monomer elastomer vulcanizates. Three different linear relationships can be obtained for the softeners independent of the aging time. It can now be expected from this study that the role of some new softeners in rubber compounds is not only confined to plasticization but also forms crosslinking networks in the peroxide-cured rubbers.  相似文献   
7.
In this study, a kind of Ni-based superalloy specially designed for additive manufacturing (AM) was investigated. Thermo-Calc simulation and differential scanning calorimetry (DSC) analysis were used to determine phases and their transformation temperature. Experimental specimens were prepared by laser metal deposition (LMD) and traditional casting method. Microstructure, phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM), X-ray diffraction (XRD) and tensile tests. The results show that this alloy contains two basic phases, γ/γ', in addition to these phases, at least two secondary phases may be present, such as MC carbides and Laves phases. Furthermore, the as-deposited alloy has finer dendrite, its mean primary dendrite arm space (PDAS) is about 30-45 μm, and the average size of γ' particles is 100-150 nm. However, the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500 μm with secondary and even third dendrite arms. Correspondingly, the alloy displays different tensile behavior with different processing methods, and the as-deposited specimen shows better ultimate tensile stress (1,085.7±51.7 MPa), yield stress (697±19.5 MPa) and elongation (25.8%±2.2%) than that of the as-cast specimen. The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites, γ', and Laves phase, and the segregation of elements, etc. Such important information would be helpful for alloy application as well as new alloy development.  相似文献   
8.
Constructing efficient and stable bifunctional electrocatalysts for overall water splitting remains a challenge because of the sluggish reaction kinetics. Herein, the core-shell hybrids composed of Co(PO3)2 nanorod core and NiFe alloy shell in situ grown on nickel foam (NiFe/Co(PO3)2@NF) are synthesized. Owing to the hierarchical palm-leaf-like structures and strong adhesion between NiFe alloys, Co(PO3)2 and substrates, the catalyst provides a large surface area and rapid charge transfer, which facilitates active sites exposure and conductivity enhancement. The interfacial effect in the NiFe/Co(PO3)2 core-shell structure modulates the electronic structure of the active sites around the boundary, thereby boosting the intrinsic activity. Benefiting from the stable structure, the durability of the catalyst is not impaired by the inevitable surface reconfiguration. The NiFe/Co(PO3)2@NF electrode presents a low cell voltage of 1.63 V to achieve 10 mA cm?2 and manifests durability for up to 36 h at different current densities.  相似文献   
9.
Because of heat amount is different from peripheral to central of friction welding interface, which is leaded to vary the characterizations along that interface. Current study, respectively, focused on the effect of different friction pressure on micro-structural and mechanical properties of that friction welding joint interface. Presently, these friction pressures are 110, 130, 150 and 170 MPa while kept all other conditions constant. The effects of different friction pressure on welding interface characterization were investigated by EDX, SEM, tensile, compression, impact and hardness tests. The tensile tests carried out on the standardized test piece with diameter 6 mm and 8 mm, thus, compression tests were extracted from the positions of 0°, 45° 90° with test specimen of 4 mm diameter and 6.5 mm length at weld center. Whereas, the impact test pieces were picked up in two positions, the first one is symmetrical, which it obtained to the respect of the rotation axis and the interface, on the other hand, the second one is non-symmetrical with the axis of rotation and symmetrical to the interface, for making the notch head coincide with the center of the welded joint, The obtained results showed that with reducing of friction pressure will present lack of bonding increasing from peripheral toward the welding center, which will responsible on reducing of the mechanical properties such as tensile, compression and impact strength.  相似文献   
10.
Ni2P nanoparticles and CdS nanorods were grew together on a mesoporous g-C3N4 through a facile in-situ solvothermal approach. Under visible light (λ > 400 nm), the as-prepared ternary PCN–CdS-5% Ni2P composite displays a high H2 evolution rate with 2905.86 μmol g?1 h?1, which is about 14, 18 and 279 times that of PCN–CdS, PCN–Ni2P and PCN, respectively. The enhanced photocatalytic activity is mainly attributed to the improved separation efficiency of the photocarriers by the type II PCN–CdS heterojunction and the effective extraction of photogenerated electrons by Ni2P. Meanwhile, Ni2P acts as co-catalyst to provide the photocatalytic active site for hydrogen reduction. In addition, PCN–CdS-5% Ni2P composite exerts good stability in 12-h cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号