首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3543篇
  免费   22篇
  国内免费   10篇
电工技术   4篇
综合类   154篇
化学工业   2095篇
金属工艺   48篇
机械仪表   15篇
建筑科学   19篇
矿业工程   15篇
能源动力   875篇
轻工业   19篇
水利工程   1篇
石油天然气   142篇
武器工业   2篇
无线电   13篇
一般工业技术   112篇
冶金工业   24篇
原子能技术   12篇
自动化技术   25篇
  2024年   2篇
  2023年   48篇
  2022年   82篇
  2021年   110篇
  2020年   93篇
  2019年   108篇
  2018年   83篇
  2017年   94篇
  2016年   51篇
  2015年   49篇
  2014年   115篇
  2013年   156篇
  2012年   141篇
  2011年   256篇
  2010年   192篇
  2009年   207篇
  2008年   192篇
  2007年   159篇
  2006年   177篇
  2005年   145篇
  2004年   141篇
  2003年   136篇
  2002年   128篇
  2001年   105篇
  2000年   75篇
  1999年   89篇
  1998年   88篇
  1997年   60篇
  1996年   48篇
  1995年   44篇
  1994年   46篇
  1993年   41篇
  1992年   34篇
  1991年   22篇
  1990年   11篇
  1989年   15篇
  1988年   10篇
  1987年   8篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1980年   1篇
排序方式: 共有3575条查询结果,搜索用时 46 毫秒
1.
In this paper, a new carbon support with a large number of mesoporous-structures is selected to prepare Pt/C catalysts. Transmission electron microscope (TEM) results show that the Pt/3# catalyst presents a sponge-like morphology, Pt particles are not only evenly distributed on the surface of carbon support, but also the smaller Pt particles are deposited in the mesoporous inside the support. The average diameter of Pt particles is only 2.8 nm. The membrane electrode assembly (MEA) based on Pt/3# catalyst also shows excellent performance. In conclusion, the 3# support is an idea carbon support for PEMFC, which helps to improve the oxygen reduction reaction (ORR) activity of the catalyst. Based on the “internal-Pt” structure of the support mesoporous, the efficient three-phase boundaries (TPBs) are construct to avoid the poisoning effect of ionomer on the nano-metal particles, reduce the activation impedance and oxygen mass transfer impedance, and improve the reaction efficiency.  相似文献   
2.
Micro-cracks commonly occur on the catalyst layers (CLs) during the manufacturing of catalyst coated membranes (CCMs). However, the crack shape parameters effect on CLs in-plane (IP) electronic conductivity λs is not clear. In this work, the relationship between crack parameters and the λs is obtained based on the two-dimensional (2D) multiple-relaxation time (MRT) lattice Boltzmann method (LBM). The LBM numerical model is validated by the normalized λs experiment applied on three different home-made cracked CLs, and the parameter study focus on crack width, length, quantity and phase angle are carried out. The results show that the decrease of λs has different sensitivity |k| to the parameters above. The crack width has little effect on λs decrease, and the |kw| is 0.038. However, crack arm length and quantity show more significant impact, which |kl| and |kN| are 0.753 and 0.725, respectively. The CLs with different crack propagation directions show significant anisotropy on λs, and a 53.53% decrease in λs is observed between 0° and 90° crack phase angle change. To manufacture a high electronic conductivity CL, crack initiation and migration mitigation are highly encouraged.  相似文献   
3.
Catalyst samples for CH4 decomposition were prepared from red mud (RM) by an acid-leaching neutralization precipitation approach. Water-washing the resultant precipitates multiple times, followed by drying at 105 °C and calcination at 500 °C, resulted in a threshold of residual Na2O, equivalent to 96% Na2O removal. Drying the precipitate at a higher temperature of 200 °C, followed by repeated water washing, provided a deeper Na2O removal of 99% and made the resultant samples more active for the targeted reaction. Subsequently, four catalyst samples with a simulated red mud composition and NaOH contents from 0 to 0.3 wt% were prepared and the catalytic test results revealed that the Na2O remaining in the RM-derived catalysts did not only inhibit their activation in CH4 but also lower their maximal activities for CH4 decomposition. Finally, two catalysts with the same simulated red mud composition and their Na impregnated respectively on Fe2O3 and a mixture support of Al2O3-SiO2-TiO2 were prepared and tested to explore the effect of Na distribution on the activation behavior of RM-derived catalysts for CH4 decomposition. The activity testing results showed that it was the Na residual dispersed on iron oxides in the RM-derived samples to significantly inhibit the activation of CH4 decomposition.  相似文献   
4.
Hydrogenation of dibenzyltoluene (DBT) is of great significance for the application in liquid organic hydrogen carriers (LOHCs). We successfully develop Mg-based metal hydrides (Mg2NiH4, MgH2, and LaH3) reactive ball-milling for the hydrogenation of DBT. Mg-based metal hydrides milled with 500 min exhibit the best catalytic activity, the hydrogen uptake of DBT can reach 4.63 wt% at the first 4 h and finally achieve 5.70 wt% through 20 h, which is the first time to use hydrogen storage material as a catalyst for the hydrogenation of DBT. The excellent catalytic hydrogenation performance of Mg-based metal hydrides mostly originates from numerous catalytic activity centers formed at the surfaces of Mg2NiH4 nanoparticles in the MgH2 matrix. Inspired by this mechanism, more general metal hydrides can be explored for catalyzing the hydrogenation of LOHCs. The new application of Mg-based metal hydrides is beneficial to developing efficient LOHC based hydrogen storage systems and offers novel insights to hydride-based catalysts.  相似文献   
5.
Fischer-Tropsch synthesis of the CO2 in biogas aims at producing light hydrocarbons and increasing its calorific value for feeding into the grid. Fe catalysts with Mn and K as promoters are supposed to yield high amounts of light hydrocarbons. Using a Fe-Mn-K/MgO catalyst, a parameter screening and long-term experiments were carried out. The catalyst shows, within the examined range, the highest selectivity to C2–C4 hydrocarbons at 450 °C, 8 bar(a), and a gas hourly space velocity of 350 h−1. Calcination of the catalyst resulted in a significant drop of activity and an almost complete loss of selectivity to hydrocarbons. Admixture of steam to the reactant gas lowers the tendency to carbon deposition but also promotes the water-gas shift reaction and results in lower yields of hydrocarbons.  相似文献   
6.
In the future, hydrogen will be an important energy carrier and industrial raw material. Catalytic steam reforming of bio-oils is a promising and economically viable technology for hydrogen production. However, during the reforming process, the catalysts are rapidly deactivated due to coke formation and sintering. Thus, maintaining the activity and stability of catalysts is the key issue in this process. Optimized operation conditions could extend the catalyst lifetime by affecting the coke morphology or promoting coke gasification. This article summarizes the recent developments in the field of catalytic steam reforming of bio-oils, focusing on the operation conditions, the properties of the catalysts, and the effects of the catalyst supports. The expected insights into the catalytic steam reforming of bio-oils will provide further guidance for hydrogen production from bio-oils.  相似文献   
7.
8.
乙烯齐聚催化剂研究进展   总被引:1,自引:0,他引:1  
孙淑坤 《辽宁化工》2003,32(12):529-532
乙烯齐聚是合成直链低碳α-烯烃最先进的方法,直链低碳α-烯烃可用于生产低密度聚乙烯和高密度聚乙烯等多种精细化学品。本文综述了乙烯齐聚催化体系的研究进展,重点介绍了镍、锆、钛催化剂的组成以及反应时间、反应温度、溶剂、助催化剂等因素对乙烯齐聚活性和选择性的影响,并讨论了典型镍的催化机理。  相似文献   
9.
A generalized effectiveness factor equation (Eq. (32)), in terms of modified Bessel functions, is derived for a catalyst pellet of arbitrary shape. The derivation is based on utilizing an appropriate one-dimensional approximation for the Laplacian in an arbitrary shaped body subjected to a uniform external concentration field. The comparison of the result with the available expressions for various geometries is highly satisfactory. It unifies the expressions for the three fundamental shapes, viz., infinite slab, infinite cylinder and sphere, and also compares very well with the exact solutions for finite shapes over the entire range of the Thiele modulus.  相似文献   
10.
对石脑油加氢处理产品硫、氮含量严重超标现象进行了研究 ,重点探讨了原料性质对催化剂活性的影响。研究表明 :直馏石脑油中高硫、氮含量蜡质混合物组分会引起NHT催化剂中毒 ,造成催化剂失活 ,此时通过提高反应温度和压力及降低空速对硫、氮的脱除效果影响不大 ,只有限制这种高硫、氮含量蜡质混合物进入装置 ,才能保证装置产品质量合格  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号