首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   2篇
石油天然气   2篇
一般工业技术   1篇
  2018年   1篇
  2013年   1篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Gas-to-liquids (GTL) technology involves the conversion of natural gas to liquid hydrocarbons. In this article, theoretical studies have been presented to determine the feasibility of transporting GTL products through the Trans-Alaska Pipeline System (TAPS). To successfully transport GTL through TAPS, heat loss along the route must be carefully determined. This study presents heat transfer and fluid dynamic calculations to evaluate this feasibility. Because of heat loss, the fluid temperature decreases in the direction of flow and this affects the fluid properties, which in turn influence convection coefficient and pumping power requirements. The temperature and heat loss distribution along the pipeline at different locations have been calculated. Fairly good agreement with measured oil temperatures is observed. The powers required to pump crude oil and GTL individually, against various losses have been calculated. Two GTL transportation modes have been considered; one as a pure stream of GTL and the second as a commingled mixture with crude oil. These results show that the pumping power and heat loss for GTL are less than that of the crude oil for the same volumetric flow rate. Therefore, GTL can be transported through TAPS using existing equipment at pump stations.  相似文献   
2.
In this paper, utilizing absorption refrigeration system as an alternative to compression refrigeration system of MFC refrigeration cycle in an integrated superstructure with the main aim of reduction in required energy is investigated. High-energy consumption in such units is reduced because of the removal of a stage of the compression system, while the possibility of using waste energy through employing of absorption refrigeration system can be provided. A superstructure including cogeneration of heating, cooling and power for LNG production and liquid fuels using Fischer-Tropsch synthesis are investigated. Exergy analysis shows that the greatest amount of exergy destruction of equipment is related to the compressors by 28.99% and the lowest exergy destruction is related to the gas turbine by 0.17%. Integrated structure has overall thermal efficiency of 90% and specific power of 0.1988 kW h/(kg LNG)−1.  相似文献   
3.
Cobalt catalysts as used in the Fischer-Tropsch synthesis (FTS) are relatively expensive (as compared to iron) and need to have a high metal dispersion and long life to be able to offer a good balance between cost and performance. The oxidation of nano-sized metallic cobalt to cobalt oxide during Fischer-Tropsch synthesis has long been postulated as a major deactivation mechanism. However, to date there is no consistent picture. This paper presents an extensive overview of the literature on this topic of deactivation by means of oxidation for unsupported as well as silica-, alumina- and titania-supported cobalt catalysts. Furthermore, it presents results on the deactivation of an industrial Co/Al2O3 catalyst as obtained by pseudo in situ X-ray diffraction, magnetic measurements and X-ray absorption near-edge spectroscopy. These analyses were performed to study the oxidation state of spent industrial Co/Al2O3 catalyst samples withdrawn from a slurry reactor operating under realistic FTS conditions, and it was concluded that oxidation can be ruled out as a major deactivation mechanism. Finally, these data together with all relevant literature were used to create a common view on the oxidation behaviour of metallic cobalt during FTS. The apparent discrepancies in literature on the oxidation behaviour of cobalt are most likely due to the lack of direct characterisation of the cobalt oxidation state and due to the comparison of catalysts with varying cobalt crystallites sizes, compared at different reactor partial pressures of hydrogen and water (PH2O/PH2). It was shown that the oxidation of cobalt can be prevented by selecting the correct combination of the reactor partial pressures of hydrogen and water (PH2O/PH2) and the cobalt crystallite size.  相似文献   
4.
This paper describes an experimental investigation of the conversion of natural gas to liquid transportation fuels through acetylene as an intermediate. The first step is the direct thermal conversion of methane to acetylene utilizing a thermal plasma heat source to dissociate the methane. The dissociation products react to form a mixture of acetylene and hydrogen. Significant improvements over the prior art were observed; these improvements may be attributed to an improved methane injection configuration and minimization of radial temperature gradients. Conversion efficiencies (percent methane converted) approached 100% and acetylene yields in the 90-95% range with 2-4% solid carbon production were obtained. A variety of methods were examined for the second step, the conversion of acetylene to liquid products. The most promising technology was the reaction of acetylene with hydrogen over a shape-selective zeolite to form C3-C5+ aliphatics.  相似文献   
5.
Abstract

Gas-to-liquids (GTL) technology involves the conversion of natural gas to liquid hydrocarbons. In this article, theoretical studies have been presented to determine the feasibility of transporting GTL products through the Trans-Alaska Pipeline System (TAPS). To successfully transport GTL through TAPS, heat loss along the route must be carefully determined. This study presents heat transfer and fluid dynamic calculations to evaluate this feasibility. Because of heat loss, the fluid temperature decreases in the direction of flow and this affects the fluid properties, which in turn influence convection coefficient and pumping power requirements. The temperature and heat loss distribution along the pipeline at different locations have been calculated. Fairly good agreement with measured oil temperatures is observed. The powers required to pump crude oil and GTL individually, against various losses have been calculated. Two GTL transportation modes have been considered; one as a pure stream of GTL and the second as a commingled mixture with crude oil. These results show that the pumping power and heat loss for GTL are less than that of the crude oil for the same volumetric flow rate. Therefore, GTL can be transported through TAPS using existing equipment at pump stations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号