首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12722篇
  免费   1735篇
  国内免费   709篇
电工技术   302篇
综合类   736篇
化学工业   5433篇
金属工艺   1422篇
机械仪表   621篇
建筑科学   494篇
矿业工程   162篇
能源动力   278篇
轻工业   599篇
水利工程   142篇
石油天然气   378篇
武器工业   105篇
无线电   886篇
一般工业技术   1964篇
冶金工业   484篇
原子能技术   52篇
自动化技术   1108篇
  2024年   51篇
  2023年   217篇
  2022年   331篇
  2021年   487篇
  2020年   495篇
  2019年   465篇
  2018年   492篇
  2017年   546篇
  2016年   589篇
  2015年   576篇
  2014年   760篇
  2013年   869篇
  2012年   826篇
  2011年   900篇
  2010年   738篇
  2009年   736篇
  2008年   711篇
  2007年   787篇
  2006年   749篇
  2005年   544篇
  2004年   531篇
  2003年   465篇
  2002年   351篇
  2001年   271篇
  2000年   244篇
  1999年   227篇
  1998年   194篇
  1997年   185篇
  1996年   107篇
  1995年   125篇
  1994年   91篇
  1993年   72篇
  1992年   84篇
  1991年   77篇
  1990年   48篇
  1989年   47篇
  1988年   23篇
  1987年   25篇
  1986年   15篇
  1985年   25篇
  1984年   21篇
  1983年   12篇
  1982年   33篇
  1981年   8篇
  1980年   1篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1975年   4篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Steam reforming of liquid hydrocarbon fuels is an appealing way for the production of hydrogen. In this work, the Rh/Al2O3 catalysts with nanorod (NR), nanofiber (NF) and sponge-shaped (SP) alumina supports were successfully designed for the steam reforming of n-dodecane as a surrogate compound for diesel/jet fuels. The catalysts before and after reaction were well characterized by using ICP, XRD, N2 adsorption, TEM, HAADF-STEM, H2-TPR, CO chemisorption, NH3-TPD, CO2-TPD, XPS, Al27 NMR and TG. The results confirmed that the dispersion and surface structure of Rh species is quite dependent on the enclosed various morphologies. Rh/Al2O3-NR possesses highly dispersed, uniform and accessible Rh particles with the highest percentage of surface electron deficient Rh0 active species, which due to the unique properties of Al2O3 nanorod including high crystallinity, relatively large alumina particle size, thermal stability, and large pore volume and size. As a consequent, Rh/Al2O3-NR catalyst exhibited superior catalytic activity towards steam reforming reactions and hydrogen production rate over other two catalysts. Especially, Rh/Al2O3-NR catalyst showed the highest hydrogen production rate of 87,600 mmol gfuel?1 gRh?1min?1 among any Rh-based catalysts and other noble metal-based catalysts to date. After long-term reaction, a significant deactivation occurred on Rh/Al2O3–NF and Rh/Al2O3-SP catalysts, due to aggregation and sintering of Rh metal particles, coke deposition and poor hydrothermal stability of nanofibrous structure. In contrast, the Rh/Al2O3-NR catalyst shows excellent reforming stability with negligible coke formation. No significantly sintering and aggregation of the Rh particles is observed after long-term reaction. Such great catalyst stability can be explained by the role of hydrothermal stable nanorod alumina support, which not only provides a unique environment for the stabilization of uniform and small-size Rh particles but also affords strong surface basic sites.  相似文献   
2.
The aim of this work was to investigate the physical and mechanical performance of architectural polyester (PES)–poly(vinyl chloride) (PVC) membranes exposed to different artificial aging conditions. Two commercially available architectural membranes were chosen as research objects. The durability of the PES/PVC fabrics was evaluated by the loss in mechanical performance, scanning electron microscopy, and X-ray diffraction analysis in order to understand the effect of the degradation agents on the surface of the membranes. The mechanical performance of the PES/PVC membranes was unchanged. Scanning electron microscopy images of the tested materials showed initial cracks after aging. The X-ray fluorescence analysis showed that at the time of aging, the amount of Cl and Si decreased slightly, while Ti decreased by half, and Ca by volume increased twice. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47523.  相似文献   
3.
In this study, blends of the bio-based poly(limonene carbonate) (PLimC) with different commodity polymers are investigated in order to explore the potential of PLimC toward generating more sustainable polymer materials by reducing the amount of petro- or food-based polymers. PLimC is employed as minority component in the blends. Next to the morphology and thermal properties of the blends the impact of PLimC on the mechanical properties of the matrix polymers is studied. The interplay of incompatibility and zero-shear melt viscosity contrast determines the blend morphology, leading for all blends to a dispersed droplet morphology for PLimC. Blends with polymers of similar structure to PLimC (i.e., aliphatic/aromatic polyester) show the best performance with respect to mechanical properties, whereas blends with polystyrene or poly(methyl methacrylate) are too brittle and polyamide 12 blends show very low elongations at break. In blends with Ecoflex (poly(butylene adipate-co-terephthalate)) and Arnitel EM400 (copoly(ether ester)) with poly(butylene terephthalate) hard and polytetrahydrofuran soft segments) a threefold increase in E-modulus can be achieved, while keeping the elongation at break at reasonable high values of ≈200%, making these blends highly interesting for applications.  相似文献   
4.
《Ceramics International》2021,47(21):29722-29729
As semiconductor devices have become miniaturized and highly integrated, interconnection problems such as RC delays, power dissipation, and crosstalk appear. To alleviate these problems, materials with a low dielectric constant should be used for the interlayer dielectric in nanoscale semiconductor devices. Silica aerogel as a porous structure composed of silica and air can be used as the interlayer dielectric material to achieve a very low dielectric constant. However, the problem of its low stiffness needs to be resolved for the endurance required in planarization. The purpose of this study is to discover the geometric effect of the electrical and mechanical properties of silica aerogel. The effects of porosity, the distribution of pores, the number of pores on the dielectric constant, and elastic modulus were analyzed using FEM. The results suggest that the porosity of silica aerogel is the main parameter that determines the dielectric constant and it should be at least 0.76 to have a very low dielectric constant of 1.5. Additionally, while maintaining the porosity of 0.76, the silica aerogel needs to be designed in an ordered open pores structure (OOPS) containing 64 or more pores positioned in a simple cubic lattice point to endure in planarization, which requires an elastic modulus of 8 GPa to prevent delamination.  相似文献   
5.
《Ceramics International》2022,48(4):5066-5074
We studied the morphological nature of various thin films such as silicon carbide (SiC), diamond (C), germanium (Ge), and gallium nitride (GaN) on silicon substrate Si(100) using the pulsed laser deposition (PLD) method and Monte Carlo simulation. We, for the first time, systematically employed the visibility algorithm graph to meticulously study the morphological features of various PLD grown thin films. These thin-film morphologies are investigated using random distribution, Gaussian distribution, patterned heights, etc. The nature of the interfacial height of individual surfaces is examined by a horizontal visibility graph (HVG). It demonstrates that the continuous interfacial height of the silicon carbide, diamond, germanium, and gallium nitride films are attributed to random distribution and Gaussian distribution in thin films. However, discrete peaks are obtained in the brush and step-like morphology of germanium thin films. Further, we have experimentally verified the morphological nature of simulated silicon carbide, diamond, germanium, and gallium nitride thin films were grown on Si(100) substrate by pulsed laser deposition (PLD) at elevated temperature. Various characterization techniques have been used to study the morphological, and electrical properties which confirmed the different nature of the deposited films on the Silicon substrate. Decent hysteresis behavior has been confirmed by current-voltage (IV) measurement in all the four deposited films. The highest current has been measured for GaN at ~60 nA and the lowest current in SiC at ~30 nA level which is quite low comparing with the expected signal level (μA). The HVG technique is suitable to understand surface features of thin films which are substantially advantageous for the energy devices, detectors, optoelectronic devices operating at high temperatures.  相似文献   
6.
Material encapsulation is a relatively new technique for coating a micro/nanosize particle or droplet with polymeric or inorganic shell. Encapsulation technology has many applications in various fields including drug delivery, cosmetic, agriculture, thermal energy storage, textile, and self-healing polymers. Poly(methyl methacrylate) (PMMA) is widely used as shell material in encapsulation due to its high chemical stability, biocompatibility, nontoxicity, and good mechanical properties. The main approach for micro/nanoencapsulation of materials using PMMA as shell comprises emulsion-based techniques such as emulsion polymerization and solvent evaporation from oil-in-water emulsion. In the present review, we first focus on the encapsulation techniques of liquid materials with PMMA shell by analyzing the effective processing parameters influencing the preparation of PMMA micro/nanocapsules. We then describe the morphology of PMMA capsules in emulsion systems according to thermodynamic relations. The techniques to investigation of mechanical properties of capsule shell and the release mechanisms of core material from PMMA capsules were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48039.  相似文献   
7.
Proton exchange membrane fuel cells (PEMFCs) have become the most attractive power supply units for stationary and mobile applications. The operation, design characteristics, as well as performance of PEMFCs, are closely related to the multiphase transport of mass, heat, and electricity in the cell, a critical of which is the gas diffusion layer (GDL). It is very important to guarantee the transmission of water and gasses under high current density, and which is the weakness of PEMFCs at present. Microporous layer (MPL) is considered to be the key variable for mass transfer, so varieties of works focus on modification of MPL materials and its structure design. However, there is still a lack of special review to summarize and prospect the progress of MPL in recent years. This review article therefore focuses on the insights and comprehensive understanding of four critical issues of the MPL, the porosity, pore size distribution, wettability, structural design and the durability of MPL. At last, the conclusion and recommendations section summarized the future prospects and recommendations for possible research opportunities.  相似文献   
8.
摘要:为了研究300M超高强钢在中性盐雾环境中的腐蚀行为及腐蚀机制,采用失重法,宏观、微观腐蚀形貌分析,三维表面轮廓分析及电化学分析的研究方法,来表征腐蚀实验现象并进行分析。结果表明:300M超高强钢在中性盐雾环境中的腐蚀产物为FeOOH、Fe2O3、Fe(OH)3和Fe3O4;腐蚀速率随着腐蚀时间逐渐降低,腐蚀后期(72h)腐蚀速率降低50%;腐蚀初期以点蚀为主,点蚀坑通过横向扩展,逐渐发展为后期的均匀腐蚀,腐蚀表面形貌呈沟壑状;外腐蚀层对基体的保护能力很弱,Cr元素在锈层靠近基体的一侧偏聚使内腐蚀层具有一定的抗腐蚀性。  相似文献   
9.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
10.
Previous experimental results indicate that the humidification conditions at the anode have an impact on the liquid water distribution in the cathode gas diffusion layer. Numerical simulations are developed to reproduce and analyze this effect. Results consistent with the experimental results are first obtained by playing with the partition coefficients of an advanced pore network model computing the liquid water formation and transfer in the cathode gas diffusion layer (GDL) for a large range of operating conditions. Then, a model for the full anode – cathode assembly is developed by combining the pore network model of the cathode GDL and a 1D model describing the heat and water transfer in the various components of the anode-cathode assembly. This enables one to generalize the dry – wet regime diagram introduced in a previous work by incorporating the effect of the humidity condition at the anode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号