首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16659篇
  免费   989篇
  国内免费   585篇
电工技术   853篇
综合类   882篇
化学工业   3533篇
金属工艺   2158篇
机械仪表   857篇
建筑科学   350篇
矿业工程   533篇
能源动力   2083篇
轻工业   549篇
水利工程   99篇
石油天然气   2636篇
武器工业   67篇
无线电   660篇
一般工业技术   825篇
冶金工业   1044篇
原子能技术   376篇
自动化技术   728篇
  2024年   42篇
  2023年   192篇
  2022年   346篇
  2021年   524篇
  2020年   482篇
  2019年   387篇
  2018年   300篇
  2017年   422篇
  2016年   481篇
  2015年   445篇
  2014年   918篇
  2013年   942篇
  2012年   1161篇
  2011年   1278篇
  2010年   958篇
  2009年   954篇
  2008年   924篇
  2007年   1051篇
  2006年   1008篇
  2005年   879篇
  2004年   755篇
  2003年   670篇
  2002年   583篇
  2001年   540篇
  2000年   415篇
  1999年   352篇
  1998年   259篇
  1997年   225篇
  1996年   203篇
  1995年   151篇
  1994年   110篇
  1993年   79篇
  1992年   49篇
  1991年   30篇
  1990年   36篇
  1989年   27篇
  1988年   17篇
  1987年   8篇
  1986年   6篇
  1985年   9篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1977年   1篇
  1975年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
2.
Steam reforming of liquid hydrocarbon fuels is an appealing way for the production of hydrogen. In this work, the Rh/Al2O3 catalysts with nanorod (NR), nanofiber (NF) and sponge-shaped (SP) alumina supports were successfully designed for the steam reforming of n-dodecane as a surrogate compound for diesel/jet fuels. The catalysts before and after reaction were well characterized by using ICP, XRD, N2 adsorption, TEM, HAADF-STEM, H2-TPR, CO chemisorption, NH3-TPD, CO2-TPD, XPS, Al27 NMR and TG. The results confirmed that the dispersion and surface structure of Rh species is quite dependent on the enclosed various morphologies. Rh/Al2O3-NR possesses highly dispersed, uniform and accessible Rh particles with the highest percentage of surface electron deficient Rh0 active species, which due to the unique properties of Al2O3 nanorod including high crystallinity, relatively large alumina particle size, thermal stability, and large pore volume and size. As a consequent, Rh/Al2O3-NR catalyst exhibited superior catalytic activity towards steam reforming reactions and hydrogen production rate over other two catalysts. Especially, Rh/Al2O3-NR catalyst showed the highest hydrogen production rate of 87,600 mmol gfuel?1 gRh?1min?1 among any Rh-based catalysts and other noble metal-based catalysts to date. After long-term reaction, a significant deactivation occurred on Rh/Al2O3–NF and Rh/Al2O3-SP catalysts, due to aggregation and sintering of Rh metal particles, coke deposition and poor hydrothermal stability of nanofibrous structure. In contrast, the Rh/Al2O3-NR catalyst shows excellent reforming stability with negligible coke formation. No significantly sintering and aggregation of the Rh particles is observed after long-term reaction. Such great catalyst stability can be explained by the role of hydrothermal stable nanorod alumina support, which not only provides a unique environment for the stabilization of uniform and small-size Rh particles but also affords strong surface basic sites.  相似文献   
3.
On-site hydrogen production through steam-methane reforming (SMR) from city gas or natural gas is believed to be a cost-effective way for hydrogen-based infrastructure due to high cost of hydrogen transportation. In recent years, there have been a lot of on-site hydrogen fueling stations under design or construction in China. This study introduces current developments and technology prospects of skid-mounted SMR hydrogen generator. Also, technical solutions and economic analysis are discussed based on China's first on-site hydrogen fueling station project in Foshan. The cost of hydrogen product from skid-mounted SMR hydrogen generator is about 23 CNY/kg with 3.24 CNY/Nm3 natural gas. If hydrogen price is 60 CNY/kg, IRR of on-site hydrogen fueling station project reaches to 10.8%. While natural gas price fall to 2.3 CNY/Nm3, the hydrogen cost can be reduced to 18 CNY/kg, and IRR can be raised to 13.1%. The conclusion is that skid-mounted SMR technology has matured and is developing towards more compact and intelligent design, and will be a promising way for hydrogen fueling infrastructures in near future.  相似文献   
4.
Hydrogen production by biogas conversion represent a promising solution for reduction of fossil CO2 emissions. In this work, a detailed techno-economic analysis was performed for decarbonized hydrogen production based on biogas conversion using calcium and chemical looping cycles. All evaluated concepts generate 100,000 Nm3/h high purity hydrogen. As reference cases, the biogas steam reforming design without decarbonization and with CO2 capture by gas-liquid chemical absorption were also considered. The results show that iron-based chemical looping design has higher energy efficiency compared with the gas-liquid absorption case by 2.3 net percentage points as well as a superior carbon capture rate (99% vs. 65%). The calcium looping case shows a lower efficiency than chemical scrubbing, with about 2.5 net percentage points, but the carbon capture rate is higher (95% vs. 65%). The hydrogen production cost increases with decarbonization, the calcium looping shows the most favourable situation (37.14 €/MWh) compared to the non-capture steam reforming case (33 €/MWh) and MDEA and iron looping cases (about 42 €/MWh). The calcium looping case has the lowest CO2 avoidance cost (10 €/t) followed by iron looping (20 €/t) and MDEA (31 €/t) cases.  相似文献   
5.
Electric nanogenerators that directly convert the energy of moving drops into electrical signals require hydrophobic substrates with a high density of static electric charge that is stable in “harsh environments” created by continued exposure to potentially saline water. The recently proposed charge-trapping electric generators (CTEGs) that rely on stacked inorganic oxide–fluoropolymer (FP) composite electrets charged by homogeneous electrowetting-assisted charge injection (h-EWCI) seem to solve both problems, yet the reasons for this success have remained elusive. Here, systematic measurements at variable oxide and FP thickness, charging voltage, and charging time and thermal annealing up to 230 °C are reported, leading to a consistent model of the charging process. It is found to be controlled by an energy barrier at the water-FP interface, followed by trapping at the FP-oxide interface. Protection by the FP layer prevents charge densities up to −1.7 mC m−2 from degrading and the dielectric strength of SiO2 enables charge decay times up to 48 h at 230 °C, suggesting lifetimes against thermally activated discharging of thousands of years at room temperature. Combining high dielectric strength oxides and weaker FP top coatings with electrically controlled charging provides a new paradigm for developing ultrastable electrets for applications in energy harvesting and beyond.  相似文献   
6.
The sustainable reduction of greenhouse gas emissions from road transport requires solutions to achieve net-zero carbon dioxide emissions. Therefore, in addition to vehicles with electrified powertrains, such as those implemented in battery electric of fuel cell vehicles, internal combustion engines fueled with e-fuels or biofuels are also under discussion. An e-fuel that has come into focus recently, is hydrogen due to its potential to achieve zero tank-to-wheel and well-to-wheel carbon dioxide emissions when the electrolysis is powered by electricity from renewable sources. Due to the high laminar burning velocity, hydrogen has the potential for engine operation with high cylinder charge dilution by e.g. external exhaust gas recirculation or enleanment, resulting in increased efficiency. On the other hand, the high burning velocity and high adiabatic flame temperatures pose a challenge for engine cooling due to increased heat losses compared to conventional fuels. To further evaluate the use of hydrogen for small passenger car engines, a series production 1 L 3 cylinder gasoline engine provided by Ford Werke GmbH was modified for hydrogen direct injection. The engine was equipped with a high pressure external exhaust gas recirculation system to investigate charge dilution at stoichiometric operation. Due to limitations of the turbocharging system, very lean operation, which can achieve nitrogen oxides raw emissions below 10 ppm, was limited to part load operation below BMEP = 8 bar. Thus, a reduction of the nitrogen oxides emission level at high loads compared to stoichiometric operation was not possible. At stoichiometric operation with external exhaust gas recirculation engine efficiency can be increased significantly. The comparison of stoichiometric hydrogen and gasoline operation shows a reduced indicated efficiency with hydrogen with significant faster combustion of hydrogen at comparable centers of combustion. However, higher boost pressures would allow to achieve even higher indicated efficiencies by charge dilution compared to gasoline engine operation.  相似文献   
7.
In the future, hydrogen will be an important energy carrier and industrial raw material. Catalytic steam reforming of bio-oils is a promising and economically viable technology for hydrogen production. However, during the reforming process, the catalysts are rapidly deactivated due to coke formation and sintering. Thus, maintaining the activity and stability of catalysts is the key issue in this process. Optimized operation conditions could extend the catalyst lifetime by affecting the coke morphology or promoting coke gasification. This article summarizes the recent developments in the field of catalytic steam reforming of bio-oils, focusing on the operation conditions, the properties of the catalysts, and the effects of the catalyst supports. The expected insights into the catalytic steam reforming of bio-oils will provide further guidance for hydrogen production from bio-oils.  相似文献   
8.
分析了排风扇前盖塑件的工艺特点,介绍了排风扇前盖注射成型模结构及模具的工作过程。  相似文献   
9.
The need to reduce PEMFC systems cost as well as to increase their durability is crucial for their integration in various applications and especially for transport applications. A new simplified architecture of the anode circuit called Alternating Fuel Feeding (AFF) offers to reduce the development costs. Requiring a new stack concept, it combines the simplicity of Dead-End Anode (DEA) with the operation advantages of the hydrogen recirculation. The three architectures (DEA, recirculation and AFF) are compared in terms of performance on a 5-kW test bench in automotive conditions, through a sensitivity analysis. A gain of 17% on the system efficiency is observed when switching from DEA to AFF. Moreover, similar performances are obtained both for AFF and for recirculation after an accurate optimization of the AFF tuning parameters. Based on DoE data, a gain of 25% on the weight of the anodic line has been identified compared to pulsed ejector architecture and 43% with the classic recirculation architecture with blower only (Miraï).  相似文献   
10.
Aluminum-doped zinc oxide (ZnO:Al, AZO) electrodes were covered with very thin (∼6 nm) Zn1−xMgxO:Al (AMZO) layers grown by atomic layer deposition. They were tested as hole blocking/electron injecting contacts to organic semiconductors. Depending on the ALD growth conditions, the magnesium content at the film surface varied from x = 0 to x = 0.6. Magnesium was present only at the ZnO:Al surface and subsurface regions and did not diffuse into deeper parts of the layer. The work function of the AZO/AMZO (x = 0.3) film was 3.4 eV (based on the ultraviolet photoelectron spectroscopy). To investigate carrier injection properties of such contacts, single layer organic structures with either pentacene or 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine layers were prepared. Deposition of the AMZO layers with x = 0.3 resulted in a decrease of the reverse currents by 1–2 orders of magnitude and an improvement of the diode rectification. The AMZO layer improved hole blocking/electron injecting properties of the AZO electrodes. The analysis of the current-voltage characteristics by a differential approach revealed a richer injection and recombination mechanisms in the structures containing the additional AMZO layer. Among those mechanisms, monomolecular, bimolecular and superhigh injection were identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号