首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62450篇
  免费   5416篇
  国内免费   5340篇
电工技术   3427篇
技术理论   8篇
综合类   6458篇
化学工业   7723篇
金属工艺   12713篇
机械仪表   3137篇
建筑科学   4999篇
矿业工程   1589篇
能源动力   1740篇
轻工业   651篇
水利工程   1239篇
石油天然气   4054篇
武器工业   731篇
无线电   3503篇
一般工业技术   7635篇
冶金工业   3777篇
原子能技术   665篇
自动化技术   9157篇
  2024年   275篇
  2023年   1014篇
  2022年   1465篇
  2021年   1870篇
  2020年   2094篇
  2019年   1890篇
  2018年   1788篇
  2017年   2327篇
  2016年   2347篇
  2015年   2338篇
  2014年   3518篇
  2013年   4156篇
  2012年   4003篇
  2011年   4738篇
  2010年   3679篇
  2009年   3910篇
  2008年   3477篇
  2007年   3948篇
  2006年   3780篇
  2005年   3155篇
  2004年   2804篇
  2003年   2392篇
  2002年   2021篇
  2001年   1619篇
  2000年   1383篇
  1999年   1190篇
  1998年   891篇
  1997年   809篇
  1996年   665篇
  1995年   636篇
  1994年   515篇
  1993年   411篇
  1992年   357篇
  1991年   238篇
  1990年   216篇
  1989年   232篇
  1988年   160篇
  1987年   89篇
  1986年   108篇
  1985年   74篇
  1984年   73篇
  1983年   52篇
  1982年   60篇
  1981年   48篇
  1980年   44篇
  1979年   35篇
  1978年   35篇
  1977年   26篇
  1964年   26篇
  1955年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway.  相似文献   
2.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
3.
本文主要总结了新冠疫情期间作者的电磁场理论课程在线教学经验。对比分析了录播和直播的优缺点后,选择录播教学方式。基于超星网络教学平台,展示了录播网络教学的具体措施,包括网上答疑和学习效果检查以及在线批改作业等。给出了网络教学可以为线下教学继续使用的方法和手段,为疫情结束后的正常教学提供了新的网络教学补充措施。  相似文献   
4.
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications.  相似文献   
5.
《Ceramics International》2022,48(20):29959-29966
High-purity SiC ceramic devices are applied in semiconductor industry owing to their outstanding properties. Nevertheless, it is difficult to densify SiC ceramics without any sintering additive even by HP sintering. In this work, high-purity and dense SiC ceramics were fabricated by HP sintering with very low amounts of sintering aids. Residual B content was only 556 ppm and relative density was more than 99.5%. Furthermore, thermal conductivity of as-prepared SiC ceramics was improved from 155 W m?1 K?1 to 167 W m?1 K?1 by increasing holding time and their plasma corrosion resistance was promoted in the meantime. The as-prepared high-purity SiC ceramics have broad application prospects in the field of semiconductor industry.  相似文献   
6.
This study deals with the anodisation of titanium grade 2 in 0.5-M sulphuric acid using a pulsed signal in a unipolar regime. The electrical parameters investigated are voltage, frequency and duty cycle. The use of duty cycles with a high percentage of anodic polarisation (90%), combined with high frequencies (1000 Hz) and the higher voltage tested (220 V), favoured the establishment of a plasma regime involving strong dielectric discharges, allowing the growth of thicker oxides but with rough architecture. The corrosion resistance of the formed film has been characterised by potentiodynamic tests in 0.5-M NaBr for localised corrosion resistance and by immersion tests in 10% v/v sulphuric acid solution for a uniform corrosion assessment. Current–time curves, visual observations and electron microscope analysis (scanning electron microscopy, energy-dispersive X-ray spectroscopy) were the tools selected to provide a correlation between technological parameters and oxide growth mechanism. For localised and uniform corrosion, anodisation at 220 V with a high level of anodic polarisation (90%) and frequency (1000 Hz) was verified to be particularly advantageous.  相似文献   
7.
In this investigation, low-cement castables were prepared using 70% alumina grog aggregates obtained from crushed alumina brick waste. The aggregates were thermally treated at 1550 °C for 3 h. Four types of low-cement castables were prepared with various types of aggregates (alumina grog with or without thermal treatment) and fillers (with or without zircon addition), and they were evaluated in terms of their physical, thermal, and chemical properties. Microstructural analysis via scanning electron microscopy (SEM) was performed on the castables before and after slag attack. Compared to the other fabricated castables, the thermally treated alumina grog castables with zircon showed better physical properties, such as a higher bulk density, cold crushing strength, and modulus of rupture and a lower apparent porosity and water absorption. In addition, they had a higher positive linear thermal expansion, refractoriness under load, permanent linear change, and hot modulus of rupture. The results of the SEM with energy dispersive X-ray analysis of the prepared castables confirmed that the mullite and anorthite phases were predominant when zircon was not added and the zircon–mullite phase additionally appeared upon the incorporation of zircon. A quantitative elemental analysis via X-ray fluorescence spectroscopy was employed to determine the composition of the castables. X-ray diffraction analysis showed that the alumina grog castables had a high mullite and low anorthite content, and the thermally treated alumina grog had a high anorthite, low mullite, and high zircon content. The improvement in the mechanical and thermo-mechanical properties of the castables with thermally treated alumina grog and added zircon can be attributed to the formation of the zircon–mullite phase with a low mullite phase content.  相似文献   
8.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
9.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
10.
Perfluorosulfonic acid ionomer membranes have been widely used as proton conducting membranes in various electrochemical processes such as polymer electrolyte fuel cells and water electrolysis. While their thermal stability has been studied by thermogravimetry and analysis of low molecular weight products, their decomposition mechanism is little understood. In this study a newly developed methodology of thermal desorption and pyrolysis in combination with direct analysis in real time mass spectrometry is applied for Nafion membrane. An ambient ionization source and a high-resolution time-of-flight mass spectrometer enabled unambiguous assignment of gaseous products. Thermal decomposition is initiated by side chain detachment above 350°C, which leaves carbonyls on the main chain at the locations of the side chains. Perfluoroalkanes are released above 400°C by main chain scission and their further decomposition products dominate above 500 °C. DFT calculation of reaction energies and barrier heights of model compounds support proposed decomposition reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号