首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33194篇
  免费   4927篇
  国内免费   1384篇
电工技术   3164篇
综合类   1938篇
化学工业   3631篇
金属工艺   13335篇
机械仪表   2942篇
建筑科学   1048篇
矿业工程   705篇
能源动力   1542篇
轻工业   531篇
水利工程   201篇
石油天然气   1545篇
武器工业   243篇
无线电   1465篇
一般工业技术   3800篇
冶金工业   2029篇
原子能技术   343篇
自动化技术   1043篇
  2024年   156篇
  2023年   468篇
  2022年   731篇
  2021年   752篇
  2020年   928篇
  2019年   950篇
  2018年   870篇
  2017年   1293篇
  2016年   1312篇
  2015年   1204篇
  2014年   1997篇
  2013年   2211篇
  2012年   2140篇
  2011年   2612篇
  2010年   1979篇
  2009年   1925篇
  2008年   1671篇
  2007年   2347篇
  2006年   2277篇
  2005年   1738篇
  2004年   1658篇
  2003年   1389篇
  2002年   1241篇
  2001年   1084篇
  2000年   877篇
  1999年   715篇
  1998年   601篇
  1997年   521篇
  1996年   440篇
  1995年   338篇
  1994年   298篇
  1993年   183篇
  1992年   148篇
  1991年   124篇
  1990年   103篇
  1989年   85篇
  1988年   42篇
  1987年   27篇
  1986年   14篇
  1985年   18篇
  1984年   12篇
  1983年   9篇
  1982年   3篇
  1981年   7篇
  1980年   1篇
  1979年   1篇
  1964年   1篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
1.
Due to stringent environmental regulations and the limited resources of fossil-based fuels, there is an urgent demand for clean and eco-friendly energy conversion devices. These criteria appear to be met by hydrogen proton exchange membrane fuel cells (PEMFCs). PEMFCs have attracted tremendous attention on account of their excellent performance with tunable operability and good portability. Nonetheless, their practical applications are hugely influenced by the scarcity and high cost of platinum (Pt) used as electrocatalysts at both cathode and anode. Pt is also susceptible to easy catalyst poisoning. Herein, this paper reviews the progress of the research regarding the development of electrocatalysts practically used in hydrogen PEMFCs, where the corner-stone reactions are cathodic oxygen reduction reaction (ORR) and anodic hydrogen oxidation reaction (HOR). To reduce the costs of PEMFCs, lessening or eliminating the use of Pt is of prime importance. For current and forthcoming laboratory/large-scale PEMFCs, there is much interest in developing substitute catalysts based on cheaper materials. As such are non-platinum (non-Pt), non-platinum group metals (non-PGMs), metal oxides, and non-metal electrocatalysts. Hence, high-performance, state-of-the-art, and novel structured electrocatalysts as replacements for Pt are needed.  相似文献   
2.
A technology for cyclic generation of hydrogen and oxygen using electrodes made of variable valency material that does not need the use of separating ion-exchange membranes is presented. The technological solution enables to fabricate electrolyzers for uninterrupted producing high-pressure hydrogen with reduced energy intensity of the production. The total work for compressing 1 m3 of hydrogen and 0.5 m3 of oxygen has been estimated. Results of investigation of influence of discrete supply of DC current to the electrolysis cell, in order to improve the processes of gas evolution and to simplify the power systems of the electrolysis plant, have been considered. There is also considered an electrolysis installation equipped with a thermosorption compressor in which LaNi5 is used as a hydride-forming compound. The comparative characteristics of the developed electrolyzer and the currently used hydrogen generators are given.  相似文献   
3.
This paper carefully evaluates the electrocatalytic activity of Sr2FeMo0.5Mn0.5O6 (SFMM) double perovskite as a candidate to substitute the state-of-the-art Ni/YSZ fuel electrode. The electrochemical performance of a 40% SFMM/CGO composite electrode was studied in CO/CO2 and H2 with different oxygen partial pressure. Two different cell configurations are prepared at a relatively low temperature of 800 °C to increase the electrochemically active surface area. The cell was supported with a 150 μm 10Sc1CeSZ electrolyte in the first configuration. The cell in the second configuration was made by applying a 400 nm thin 8YSZ layer on 150 μm CGO electrolyte to improve the electrolyte ionic conductivity. Improving catalytic activity with increasing oxygen partial pressure is a key characteristic of the developed electrode. The polarization resistance of about 0.34 and 0.56 Ω cm2 at 750 °C in 3%H2O + H2 and 60% CO/CO2 makes this electrode a promising candidate for SOCs application.  相似文献   
4.
With lower alloying cost and higher mechanical properties, lean duplex stainless steels can be an alternative to the more commonly used austenitic stainless steels. However, these alloys are still not the preferred choice, probably due to a lack of field experience. A study was thus initiated in view of defining the limits of use of selected (lean) duplexes for urban wastewater treatment units. The present paper shows the localized corrosion performance of selected lean duplexes in chloride contaminated solutions. The results are compared with austenitic S30403 and S31603 and with the more standard duplexes S82441 and S32205. The effect of welding was also investigated. Exposures in field municipal wastewater plants were conducted for 1 year in low and high chloride content units. The results show that lean duplexes S32101 and S32202 can be used as alternatives to S30403 and S31603 in low chloride electrolytes. At 500 ppm of chloride content, duplex stainless steel S32304 showed better corrosion resistance than S30403 and S31603. For higher chloride contents (1000 ppm and above) the standard duplexes S82441 and S32205 shall be preferred.  相似文献   
5.
《Ceramics International》2022,48(8):10921-10931
Coatings were obtained by vacuum electro-spark alloying (VESA), pulsed cathodic arc evaporation (PCAE), magnetron sputtering (MS) techniques and VESA-PCAE-MS hybrid technology using Cr3C2–NiAl electrodes. The structure of the coatings was analyzed using scanning and transmission electron microscopy, X-ray diffraction and energy-dispersive spectroscopy. Mechanical properties were determined by nanoindentation, while tribological properties were assessed using pin-on-disk tribometer. Corrosion resistance was estimated by voltammetry in 1 N H2SO4 and 3.5%NaCl solutions. Oxidation resistance tests were performed at 800°С in air. The VESA coating had the highest thickness, low friction coefficient and high wear resistance. PCAE coating demonstrated the highest hardness (24 GPa) and elastic recovery (59%), oxidation resistance and superior corrosion resistance both in 1 N H2SO4 (icorr = 70 μА/cm2) and 3.5%NaCl (icorr = 0.74 μА/cm2) solutions. The MS coating had average mechanical properties and low corrosion current density (71 μА/cm2) in 1 N H2SO4. Deposition of coatings using VESA-PCAE-MS hybrid technology led to an increase in corrosion and oxidation resistance at least by 1.5 times in comparison with the VESA coating.  相似文献   
6.
We propose all printed and highly stable organic resistive switching device (ORSD) based on graphene quantum dots (G-QDs) and polyvinylpyrrolidone (PVP) composite for non-volatile memory applications. It is fabricated by sandwiching G-QDs/PVP composite between top and bottom silver (Ag) electrodes on a flexible substrate polyethylene terephthalate (PET) at ambient conditions through a cost effective and eco-friendly electro-hydrodynamic (EHD) technique. Thickness of the active layer is measured around 97 nm. The proposed ORSD is fabricated in a 3 × 3 crossbar array. It operates switching between high resistance state (HRS) and low resistance state (LRS) with OFF/ON ratio ∼14 for more than 500 endurance cycles, and retention time for more than 30 days. The switching voltage for set/reset of the devices is ±1.8 V and the bendability down to 8 mm diameter for 1000 cycles are tested. The elemental composition and surface morphology are characterized by XPS, FE-SEM, and microscope.  相似文献   
7.
The electrode ionomer is a key factor that significantly affects the catalyst layer morphology and fuel cell performance. Herein, sulfonated poly(arylene ether sulfone)-based electrode ionomers with polymers of various molecular weights and alcohol/water mixtures were prepared, and those comprising the alcohol/water mixture showed a higher performance than the ones prepared using higher boiling solvents, such as dimethylacetamide; this is owing to the formation of the uniformly dispersed ionomer catalyst layer. The relation between ionomer molecular weight for the same polymer structure and the sulfonation degree was investigated. Because the chain length of polymer varies with molecular weight and chain entanglement degree, its molecular weight affects the electrode morphology. As the ionomer covered the catalyst, the agglomerates formed were of different morphologies according to their molecular weight, which could be deduced indirectly through dynamic light scattering and scanning electron microscopy. Additionally, the fuel cell performance was confirmed in the current-voltage curve.  相似文献   
8.
从电焊机自身电气特点及建筑工地工作环境入手,探讨电焊机安全技术的实施方法。分析电焊机安全隐患及事故的分类以及电焊机在使用过程中产生危险的原因。介绍电焊机在安装以及作业过程中的安全措施。  相似文献   
9.
In continuation to my previous work (Guha S. AIChE J. 2013;59(4):1390-1399), in this work, effects of ionic migration are evaluated for disk region of a rotating ring disk electrode system by numerically solving complex differential equations, developed for mass transfer along with kinetic complication in presence of ionic migration under limiting current condition. The system for simulation is 0.01 M Fe2(SO4)3 solution with H2SO4 as supporting electrolyte. Simulation cases are presence and absence of ionic migration with kinetic complication (oxidation of Fe2+ to Fe3+ under O2 pressure). Results show that concentration boundary layer thickness of reactant Fe3+ reduces appreciably and steady-state disk current reduces substantially in presence of migration. Simulated steady-state disk current in absence of migration case agrees well with published data. Results indicate higher Fe2+ concentration in presence of migration and thereby higher rate of oxidation of Fe2+ to Fe3+ at all rate constant values.  相似文献   
10.
Radiation therapy is a technology-driven cancer treatment modality that has experienced significant advances over the last decades, due to multidisciplinary contributions that include engineering and computing. Recent technological developments allow the use of noncoplanar volumetric modulated arc therapy (VMAT), one of the most recent photon treatment techniques, in clinical practice. In this work, an automated noncoplanar arc trajectory optimization framework designed in two modular phases is presented. First, a noncoplanar beam angle optimization algorithm is used to obtain a set of noncoplanar irradiation directions. Then, anchored in these directions, an optimization strategy is proposed to compute an optimal arc trajectory. The computational experiments considered a pool of twelve difficult head-and-neck tumor cases. It was possible to observe that, for some of these cases, the optimized noncoplanar arc trajectories led to significant treatment planning quality improvements, when compared with coplanar VMAT treatment plans. Although these experiments were done in a research environment treatment planning software (matRad), the conclusions can be of interest for a clinical setting: automated procedures can simplify the current treatment workflow, produce high-quality treatment plans, making better use of human resources and allowing for unbiased comparisons between different treatment techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号