首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21176篇
  免费   1963篇
  国内免费   1155篇
电工技术   777篇
综合类   1349篇
化学工业   9139篇
金属工艺   1560篇
机械仪表   311篇
建筑科学   1048篇
矿业工程   382篇
能源动力   1638篇
轻工业   435篇
水利工程   207篇
石油天然气   4433篇
武器工业   68篇
无线电   176篇
一般工业技术   1581篇
冶金工业   844篇
原子能技术   138篇
自动化技术   208篇
  2024年   42篇
  2023年   237篇
  2022年   455篇
  2021年   527篇
  2020年   607篇
  2019年   583篇
  2018年   558篇
  2017年   560篇
  2016年   713篇
  2015年   641篇
  2014年   1061篇
  2013年   1226篇
  2012年   1362篇
  2011年   1399篇
  2010年   1185篇
  2009年   1189篇
  2008年   1154篇
  2007年   1299篇
  2006年   1252篇
  2005年   1138篇
  2004年   1079篇
  2003年   1070篇
  2002年   860篇
  2001年   789篇
  2000年   667篇
  1999年   529篇
  1998年   426篇
  1997年   363篇
  1996年   314篇
  1995年   223篇
  1994年   175篇
  1993年   134篇
  1992年   123篇
  1991年   82篇
  1990年   85篇
  1989年   61篇
  1988年   23篇
  1987年   28篇
  1986年   5篇
  1985年   18篇
  1984年   13篇
  1983年   10篇
  1982年   6篇
  1981年   1篇
  1980年   6篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The continuous catalytic regenerative (CCR) reforming process is one of the most significant sources of hydrogen production in the petroleum refining process. However, the fluctuations in feedstock composition and flow rate could significantly affect both product distribution and energy consumption. In this study, a robust deviation criterion based multi-objective optimization approach is proposed to perform the optimal operation of CCR reformer under feedstock uncertainty, with simultaneous maximization of product yields and minimization of energy consumption. Minimax approach is adopted to handle these uncertain objectives, and the Latin hypercube sampling method is then used to calculate these robust deviation criteria. Multi-objective surrogate-based optimization methods are next introduced to effectively solve the robust operational problem with high computational cost. The level diagram method is finally utilized to assist in multi-criteria decision-making. Two robust operational optimization problems with different objectives are solved to demonstrate the effectiveness of the proposed method for robust optimal operation of the CCR reforming process under feedstock uncertainty.  相似文献   
3.
中国石化海南炼油化工有限公司0.2 Mt/a C5/C6烷烃异构化装置以连续重整装置的拔头油为原料,使用NNI-1催化剂,采用一次通过流程,不设脱异戊烷塔和稳定塔,经设在连续重整装置内的脱丁烷塔稳定处理后作为汽油调合组分。该装置于2006年9月开工投产,截至2015年3月已连续运行3个周期。长周期运行分析结果表明:前两个周期中NNI-1催化剂具有较高的异构化活性及选择性,C5异构化率为60%左右,C6异构化率为80%左右,C6选择性为15%左右,产品辛烷值基本达到技术指标要求(RON≥78);而在第三周期运行中,催化剂积炭增加等原因导致其异构化活性及选择性降低,异构化产品辛烷值提升能力呈现逐步衰减的趋势,提高反应苛刻度已不能弥补催化剂活性下降造成的产品辛烷值降低。为保证装置长周期运行,建议择机停工对催化剂进行再生,或是直接换用与装置原料性质匹配的异构化催化剂。  相似文献   
4.
A 2D computational fluid dynamics (Eulerian–Eulerian) multiphase flow model coupled with a population balance model (CFD-PBM) was implemented to investigate the fluidization structure in terms of entrance region in an industrial-scale gas phase fluidized bed reactor. The simulation results were compared with the industrial data, and good agreement was observed. Two cases including perforated distributor and complete sparger were applied to examine the flow structure through the bed. The parametric sensitivity analysis of time step, number of node, drag coefficient, and specularity coefficient was carried out. It was found that the results were more sensitive to the drag model. The results showed that the entrance configuration has significant effect on the flow structure. While the dead zones are created in both corners of the distributors, the perforated distributor generates more startup bubbles, heterogeneous flow field, and better gas–solid interaction above the entrance region due to jet formation.  相似文献   
5.
《Advanced Powder Technology》2020,31(12):4598-4618
Simulation based on discrete element method (DEM) coupled with computational fluid dynamics (CFD), coupled DEM-CFD, is a powerful tool for investigating the details of dense particle–fluid interaction problems such as in fluidized beds and pneumatic conveyers. The addition of a mechanical vibration to a system can drastically alter the particle and fluid flows; however, their detailed mechanisms are not well understood. In this study, a DEM-CFD model based on a non-inertial frame of reference is developed to achieve a better understanding of the influence of vibration in a vibrated fluidized bed. Because the high computational cost of DEM-CFD calculations is still a major problem, an upscaled coarse-graining model is also employed. To realize similar behaviors with enlarged model particles, non-dimensional parameters at the particle scale were deduced from the governing equations. The suitability and limitations of the proposed model were examined for a density segregation problem of a binary system. To reduce the computational costs, we show that the ratio between the bed width and model particle size can be reduced to a minimum value of 100; to obtain similar segregation behaviors, the ratio between the bed height and model particle size is considered unchanged.  相似文献   
6.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
7.
Replacement of precious single metal catalysts with cost-effective, highly-dispersed composite catalysts for catalytic hydrothermal conversion of residue holds tremendous promise for the residue upgrading technologies. Organic metals were added to the feed as the oil-soluble precursors, and transformed into the catalytic active phases in this work. Physical properties and structures of the composite catalysts had been investigated by X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope and transmission electron microscopy. The composite catalysts were found to be highly efficient in the catalytic hydrothermal conversion of both model compound and residue. Increased metal dispersion and synergistic effects of two metals played indispensable roles in such catalytic system. Results showed that under the test conditions in the article, the catalyst had the best catalytic performance when the mass ratio of molybdenum to iron was 1.5.  相似文献   
8.
Cyclic tension and bend tests were performed on heat-resistant 12Cr1MoV steel specimens in as-supplied condition as well as after Zr+ ion beam surface irradiation. Distinct differences in strain induced relief, as well in cracking pattern of modified surface layer were observed by optical microscopy and interference profilometry. Changes in subsurface layer are characterized by means of nano- and microindentation and fractography of fracture surfaces (with the help of scanning electron microscopy). It is shown that the main influence on mechanical properties is mostly induced by thermal treatment during irradiation rather than formation of a 2 μm thick layer doped with Zr. The differences in deformation behavior may be explained by physical mesomechanics concepts.  相似文献   
9.
以废弃的流化催化裂化催化剂(简称SFCC)为载体、β-环糊精为金属络合剂、硝酸镍为镍源,采用湿法浸渍法制备β-环糊精修饰的Ni/SFCC催化剂(简称Ni/SFCC-CD催化剂),考察其对C9石油树脂的催化加氢性能。通过BET比表面积测试、H2程序升温还原、X射线光电子能谱等手段对催化剂的物相结构进行表征,研究β-环糊精的作用机理及其对催化剂加氢性能的影响。研究结果表明:在反应温度为260 ℃、反应压力为7 MPa、反应时间为2.0 h的最优条件下,采用Ni/SFCC-CD催化C9石油树脂加氢,可制得溴值为1.45 gBr/(100 g)、色号(加纳德)小于1的水白色氢化C9石油树脂,催化剂循环使用4次后仍保持良好活性;β-环糊精的作用机理是:β-环糊精与硝酸镍产生络合作用,抑制硝酸镍的分解、控制NiO的结晶过程和增强活性组分Ni与载体之间的相互作用力,从而提高了Ni/SFCC-CD的催化活性和稳定性。  相似文献   
10.
《能源学会志》2020,93(6):2381-2387
To enhance the activity of catalysts for CO removal, the perovskite-type catalysts La1-xSrxCoO3 (x = 0, 0.2, 0.4, 0.6, and 0.8) with different Sr2+ doping amount were synthesized by flame spray synthesis (FSS) method. The perovskite-type catalyst synthesized by FSS has a much larger specific surface area (SSA) than that prepared by other conventional methods. The SSA of catalyst increases with the increase of Sr2+ doping amount and the SSA of La0.2Sr0.8CoO3 reaches 31.65 m2/g. Compared with other conventional methods, FSS method significantly improves the activity of catalyst and makes it close to the performances of catalysts with surface modification. The substitution of La3+ by Sr2+ promotes the generation of secondary phase Co3O4 and SrCO3. The catalytic activity of La1-xSrxCoO3 increases with the addition of Sr2+, which results from the increasing active sites and oxygen vacancies. Interestingly, La0.4Sr0.6CoO3 performs the highest activity for CO oxidation and the CO conversion reaches 50% at 148.6 °C and 90% at 165.9 °C. The oxidation of CO over La1-xSrxCoO3 catalyst may follow a combination of MvK and L-H mechanisms according to the experimental results of H2-TPR. Moreover, the catalyst exhibits good catalytic activity in consecutive oxidation cycles. In consecutive oxidation experiments with La0.4Sr0.6CoO3, the CO conversion reaches 50% at 168.8 °C and 90% at 197.8 °C in the eighth oxidation cycle. These results prove that FSS method can further improve the activity of catalysts and is suitable for the preparation of efficient catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号