首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
电工技术   1篇
综合类   1篇
武器工业   1篇
一般工业技术   38篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   4篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1989年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
A detachable thermosiphon, as a transient thermal switch for conduction-cooled superconducting magnet, is designed, fabricated and tested. A thermosiphon between the first and second stages of a cryocooler can reduce the cool-down time of a conduction-cooled superconducting magnet by using the large cooling capacity of the first stage. The thermosiphon is a very efficient heat transfer device until all the working fluid in it freezes (off-state). After the working fluid freezes and the second stage temperature becomes lower than that of the first stage, however, the thermosiphon then becomes a conduction heat leak path between two stages of the cryocooler. Considering a very small cooling capacity of the second stage of the cryocooler around 4.2 K, the conduction heat loss is not negligible. Therefore, a detachable thermosiphon, made of a metal bellows, is considered to be able to eliminate such a conduction heat leak. The mock-up magnet is cooled down with the thermosiphon and the thermodynamic states of the thermosiphon and the mock-up magnet are precisely examined during the whole cool-down process. At off-state, the thermosiphon is detached mechanically from the magnet. In this way, the conduction heat leak path through the thermosiphon wall is completely eliminated. This paper describes the detailed transient operation of the detachable thermosiphon using nitrogen as the working fluid.  相似文献   
2.
A Cryotiger® gas-mixture cooler was applied for cooling of three high-Tc SQUID magnetometers. These SQUID magnetometers were mounted on an alumina holder in an axial gradiometer configuration. From 20 Hz upward, the system noise was about 0.1 pT/√Hz. Below this frequency, the noise gradually increased to a level of 10 pT/√Hz at 1 Hz. This low-frequency excess noise appeared to be due to remnant magnetization of the Cryotiger cold head. Movement of magnetic cold-head parts with respect to the SQUIDs are induced by pressure fluctuations in the heat exchanger lines. By using one SQUID as a reference for the cooler noise, a first-order gradiometer can be formed in which the cooler noise is eliminated. To establish a proper second-order gradiometer either a fourth SQUID has to be added, or the spatial separation between cold head and SQUIDs has to be increased significantly.  相似文献   
3.
Stirling type pulse tubes are classically based on the use of an inertance phase shifter to optimize their cooling power. The limitations of the phase shifting capabilities of these inertances have been pointed out in various studies. These limitations are particularly critical for low temperature operation, typically below about 50 K. An innovative phase shifter using an inertance tube filled with liquid, or fluid with high density or low viscosity, and separated by a sealed metallic diaphragm has been conceived and tested. This device has been characterized and validated on a dedicated test bench. Operation on a 50–80 K pulse tube cooler and on a low temperature (below 8 K) pulse tube cooler have been demonstrated and have validated the device in operation. These developments open the door for efficient and compact low temperature Stirling type pulse tube coolers. The possibility of long life operation has been experimentally verified and a design for space applications is proposed.  相似文献   
4.
In some special applications, the pulse tube cryocooler must be designed as U-shape; however, the connecting tube at the cold end will influence the cooling performance. Although lots of U-shape pulse tubes have been developed, the mechanism of the influence of the connecting tube on the performance has not been well demonstrated. Based on thermoacoustic theory, this paper discusses the influence of the length and diameter of the connecting tube, transition structure, flow straightener, impedance of the inertance tube, etc. on the cooling performance. Primary experiments were carried out in two in-line shape pulse tube cryocoolers to verify the analysis. The two cryocoolers shared the same regenerator, heat exchangers, inertance tube and straightener, and the pulse tube, so the influence of these components could be eliminated. With the same electric power, the pulse tube cryocooler without connecting parts obtained 31 W cooling power at 77 K; meanwhile, the other pulse tube cryocooler with the connecting parts only obtained 27 W, so the connecting tube induced more than a 12.9% decrease on the cooling performance, which agrees with the calculation quite well.  相似文献   
5.
This paper describes the higher cooling capability of the Lockheed Martin coax Micro cryocooler thermal mechanical unit. The design of the previously qualified TRL6 Micro (Nast et al., 2014) [1] was modified to accommodate over twice the input power, greatly increasing the cooling capability. These Micro units are in a split configuration with the cold head separated from the compressor.This unit was optimized for cooling at 105 K and provides cooling over a wide range of temperatures. With a weight below 450 g, this small unit is ideal for compact instruments. Load lines were obtained over a range of powers, cold tip temperatures and rejection temperatures. This testing raised the Technology Readiness Level to six.  相似文献   
6.
This article describes an investigation of the transient behavior of a small (2.0 W at 85 K) pulse tube cryocooler operating at 120 Hz with an average pressure of 3.5 MPa, capable of relatively fast cool-down from ambient to about 60 K. In a series of experiments, the cold end temperature was measured as a function of time in a complete cool-down and subsequent warm-up cycle, with no heat load and different quantities of excess mass at the cold end. A transient heat transfer model was developed, that considers the effects of the cooling power extracted at the cold end and that of the heat gain at the warm end on the cool-down time. The heat gain factor was calculated from warm-up data, and found to be approximately the same for all experiments. Using the same model with cool-down data enables a determination of both the gross and net cooling power as functions of time, but more importantly – as functions of the cold end temperature. An expression was derived for the cold end temperature as a function of time for any amount of excess mass, including zero. The cool-down time of the “lean” cryocooler (with no excess mass) was found to be less than 50 s.This cool-down/warm-up method for evaluating the cooling power of a cryocooler seems simpler than steady-state experiments with a heater simulating load at the cold end. Use of the heat transfer model with data from one or two good experiments conducted in the above manner, can yield both the gross and net cooling powers of a cryocooler as functions of the cold end temperature, and allow the determination of cool-down time with any amount of excess thermal mass. While the net cooling power during cool-down differs somewhat from that under steady-state operation, the former can serve as a good measure for the latter.  相似文献   
7.
Improvements in simulation and practice for the heat load of a helium phase separator are discussed. The separator cryostat (volume 100 L, cooling capacity 1.5 W at 4.2 K) re-condenses and stores liquid helium. An additional radiation shield was designed to minimize the radiative heat transfer and to decrease the heat conduction. The experimental results indicate that the heat load of the separator was decreased from 5.56 W to 1.555 W, a gain about 4 W of heat load, which is an improvement by 72%. Liquid helium (50 L) was stored in the separator stably for more than 90 h. Software implementing the finite-element method (FEM) was used to predict the temperature distribution of pipe fittings and the separator heat load with or without the additional radiation shield. The results of these simulations show that the temperatures of the pipe fittings were significantly decreased in the separator with additional radiation shields. For the heat load, the trends of simulation and experimental results were similar. This work provides a simple and effective method to minimize the radiation heat load of a separator. In this paper, we discuss in detail the improvements of the model, the experimental setup and the results of comparisons between experiments and simulations.  相似文献   
8.
A spaceborne cryocooler produces undesirable micro-vibration disturbances during its on-orbit operation, which is one of the main sources of degradation of the image quality of high-resolution observation satellites. Therefore, to comply with the strict mission requirement for the acquisition of high-quality images, micro-vibration disturbances induced by cryocooler operation need to be isolated. In this study, we proposed a spaceborne cryocooler micro-vibration isolator that employs a pseudoelastic shape memory alloy (SMA) mesh washer, which guarantees vibration isolation performance in a severe launch vibration environment while effectively isolating the micro-vibrations from the cryocooler on-orbit. Basic characteristics of the cryocooler assembly integrated with the proposed isolators were measured through static tests and free vibration tests. The effectiveness of the isolator design was demonstrated by the micro-vibration measurement tests under qualification temperature limits.  相似文献   
9.
A closed-cycle Joule–Thomson cryocooler for resistance thermometer calibration has been developed. It consists of a Gifford–McMahon mechanical refrigerator and a closed-cycle 3He Joule–Thomson expansion circuit that utilizes the isenthalpic expansion of 3He for cooling. The developed cryocooler can reach temperatures as low as 0.6K and can operate for months with a simple procedure. The typical cooling power of the cryocooler is 1mW at 0.65K with a molar flow rate of 160μmol ·s−1 through the 3He Joule–Thomson circuit. The possible mechanical vibration level experienced by the resistance thermometers was measured with a laser vibrometer. It was confirmed that the maximum acceleration level is 0.1m· s−2 and will not cause a problem for thermometer calibration.  相似文献   
10.
At the University of Twente, a heart scanner has been designed and constructed that uses superconducting devices (superconducting quantum interference devices (SQUIDs)) to measure the magnetic field of the heart. A key feature is the elimination of liquid cryogens by incorporating cryocoolers. In the design, two coolers are operated in counter-phase to reduce the mechanical interference. In addition to the application of ferromagnetic shields around the compressors, the magnetic cooler interference is reduced by placing the SQUID magnetometers coplanar with respect to the coolers. In this way, the cooler noise was reduced to a level below the intrinsic sensor noise: 0.16 pT/√Hz. A temperature of 60 K was realised with a cool-down time of about 2 h. The corresponding heat load to the coolers is roughly 0.9 W. Magnetocardiograms were recorded inside a magnetically shielded room.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号