首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7411篇
  免费   312篇
  国内免费   390篇
电工技术   369篇
综合类   206篇
化学工业   1190篇
金属工艺   384篇
机械仪表   460篇
建筑科学   176篇
矿业工程   154篇
能源动力   1352篇
轻工业   117篇
水利工程   25篇
石油天然气   56篇
武器工业   18篇
无线电   1599篇
一般工业技术   955篇
冶金工业   167篇
原子能技术   118篇
自动化技术   767篇
  2024年   16篇
  2023年   105篇
  2022年   134篇
  2021年   180篇
  2020年   178篇
  2019年   156篇
  2018年   158篇
  2017年   217篇
  2016年   154篇
  2015年   176篇
  2014年   333篇
  2013年   471篇
  2012年   432篇
  2011年   652篇
  2010年   546篇
  2009年   487篇
  2008年   513篇
  2007年   515篇
  2006年   433篇
  2005年   380篇
  2004年   288篇
  2003年   231篇
  2002年   195篇
  2001年   163篇
  2000年   144篇
  1999年   142篇
  1998年   127篇
  1997年   114篇
  1996年   74篇
  1995年   74篇
  1994年   64篇
  1993年   56篇
  1992年   39篇
  1991年   36篇
  1990年   22篇
  1989年   26篇
  1988年   21篇
  1987年   6篇
  1986年   5篇
  1985年   12篇
  1984年   11篇
  1983年   5篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
  1973年   1篇
  1951年   1篇
排序方式: 共有8113条查询结果,搜索用时 15 毫秒
1.
2.
Direct methanol fuel cells (DMFC), among the most suited and prospective alternatives for portable electronics, have lately been treated with nanotechnology. DMFCs may be able to remedy the energy security issue by having low operating temperatures, high conversion efficiencies, and minimal emission levels. Though, slow reaction kinetics are a significant restriction of DMFC, lowering efficiency and energy output. Nowadays, research is more focused on fundamental studies that are studying the factors that can improve the capacity and activity of catalysts. In DMFC, among the most widely explored catalysts are platinum and ruthenium which are enhanced in nature by the presence of supporting materials such as nanocarbons and metal oxides. As a result, this research sheds light on nanocatalyst development for DMFCs based on Platinum noble metal. To summarize, this research focuses on the structure of nanocatalysts, as well as support materials for nanocatalysts that can be 3D, 2D, 1D, or 0D. The support material described is made up of CNT, CNF, and CNW, which are the most extensively used because they improve the performance of catalysts in DMFCs. In addition, cost estimations for fuel cell technology are emphasized to show the technology's status and requirements. Finally, challenges to nanocatalyst development have been recognized, as well as future prospects, as recommendations for more innovative future research.  相似文献   
3.
In this study, C/SiOC and C/SiO2 composites were prepared by using carbonaceous microspheres with different surface functional groups. Carbonaceous microspheres based on hydrothermal reaction of glucose contains hydroxyl group, while the surface carboxyl group increases after NaOH etching. The hydroxyl group increases the oxygen-enriched structural units of SiOC ceramics, and the C spheres are closely enwrapped in SiOC matrix after pyrolysis at 900 °C. However, the interfacial reaction of surface carboxyl with Si–OH results in the formation of cristobalite SiO2, and C spheres are not only encased inside the SiOC matrix, but also dispersed outside of SiOC ceramics. After removal of C via calcination at 500 °C for 5 h, C/SiOC and C/SiO2 composites are transformed into amorphous SiO2 and cristobalite SiO2, respectively. The thermogravimetric analysis indicates the oxidation resistance of SiOC is superior to that of C and SiO2.  相似文献   
4.
A 2D computational fluid dynamics (Eulerian–Eulerian) multiphase flow model coupled with a population balance model (CFD-PBM) was implemented to investigate the fluidization structure in terms of entrance region in an industrial-scale gas phase fluidized bed reactor. The simulation results were compared with the industrial data, and good agreement was observed. Two cases including perforated distributor and complete sparger were applied to examine the flow structure through the bed. The parametric sensitivity analysis of time step, number of node, drag coefficient, and specularity coefficient was carried out. It was found that the results were more sensitive to the drag model. The results showed that the entrance configuration has significant effect on the flow structure. While the dead zones are created in both corners of the distributors, the perforated distributor generates more startup bubbles, heterogeneous flow field, and better gas–solid interaction above the entrance region due to jet formation.  相似文献   
5.
Textured surface is commonly used to enhance the efficiency of silicon solar cells by reducing the overall reflectance and improving the light scattering. In this study, a comparison between isotropic and anisotropic etching methods was investigated. The deep funnel shaped structures with high aspect ratio are proposed for better light trapping with low reflectance in crystalline silicon solar cells. The anisotropic metal assisted chemical etching (MACE) was used to form the funnel shaped structures with various aspect ratios. The funnel shaped structures showed an average reflectance of 14.75% while it was 15.77% for the pillar shaped structures. The average reflectance was further reduced to 9.49% using deep funnel shaped structures with an aspect ratio of 1:1.18. The deep funnel shaped structures with high aspect ratios can be employed for high performance of crystalline silicon solar cells.  相似文献   
6.
Technical ceramics exhibit exceptional high-temperature properties, but unfortunately their extreme crack sensitivity and high melting point make it challenging to manufacture geometrically complex structures with sufficient strength and toughness. Emerging additive manufacturing technologies enable the fabrication of large-scale complex-shape artifacts with architected internal topology; when such topology can be arranged at the microscale, the defect population can be controlled, thus improving the strength of the material. Here, ceramic micro-architected materials are fabricated using direct ink writing (DIW) of an alumina nanoparticle-loaded ink, followed by sintering. After characterizing the rheology of the ink and extracting optimal processing parameters, the microstructure of the sintered structures is investigated to assess composition, density, grain size and defect population. Mechanical experiments reveal that woodpile architected materials with relative densities of 0.38–0.73 exhibit higher strength and damage tolerance than fully dense ceramics printed under identical conditions, an intriguing feature that can be attributed to topological toughening.  相似文献   
7.
8.
We model developable surfaces by wrapping a planar figure around cones and cylinders. Complicated developables can be constructed by successive mappings using cones and cylinders of different sizes and shapes. We also propose an intuitive control mechanism, which allows a user to select an arbitrary point on the planar figure and move it to a new position. Numerical techniques are then used to find a cone or cylinder that produces the required mapping. Several examples demonstrate the effectiveness of our technique.  相似文献   
9.
Deposition of Ag films by direct liquid injection-metal organic chemical vapor deposition (DLI-MOCVD) was chosen because this preparation method allows precise control of precursor flow and prevents early decomposition of the precursor as compared to the bubbler-delivery. Silver(I)-2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedionato-triethylphosphine [Ag(fod)(PEt3)] as the precursor for Ag CVD was studied, which is liquid at 30 °C. Ag films were grown on different substrates of SiO2/Si and TiN/Si. Argon and nitrogen/hydrogen carrier gas was used in a cold wall reactor at a pressure of 50–500 Pa with deposition temperature ranging between 220 °C and 350 °C. Ag films deposited on a TiN/Si diffusion barrier layer have favorable properties over films deposited on SiO2/Si substrate. At lower temperature (220 °C), film growth is essentially reaction-limited on SiO2 substrate. Significant dependence of the surface morphology on the deposition conditions exists in our experiments. According to XPS analysis pure Ag films are deposited by DLI-MOCVD at 250 °C by using argon as carrier gas.  相似文献   
10.
讨论了主因素分析法以及神经网络法在等离子体刻蚀工艺中的应用.结果表明主元素分析法可以实现对数据的压缩,而神经网络算法则显示出比传统的统计过程控制算法更好的准确性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号