排序方式: 共有72条查询结果,搜索用时 0 毫秒
1.
ABSTRACTConsidering the low estimation accuracy of the traditional interpolation method, this paper, on the basis of second-order cone programming (SOCP), proposes a novel joint time difference of arrival (TDOA) and frequency difference of arrival (FDOA) estimation interpolation method, which can attain the sub-sample precision. The proposed method uses several discrete samples produced by cross ambiguity function (CAF) to structure the convex optimization models with regard to the interpolation surface. Then, the SOCP is utilized to obtain the interpolation surface which matches the discrete surface of CAF well. Finally, the method achieves the precision superior to the traditional TDOA and FDOA estimation directly through the search for the maximum of the continuous approximate surface. This method decreases the computational load without loss of precision and can efficiently reduce the limitation of finite sampling interval and sampling time in estimation precision. Numerical simulations show that the method in this paper is efficient and outperforms existing interpolation algorithms about estimation precision. 相似文献
2.
3.
针对多星频差定位系统,建立了频差定位模型。利用矩阵理论和统计信号处理理论,推导了由于频差、卫星自定位和卫星速度测量误差所产生的定位误差几何稀度(GDOP)公式,对其理论分析和仿真表明:地球约束能显著改善定位精度;频差测量误差和卫星位置速度测量误差对系统性能均有影响,但前者影响更大。 相似文献
4.
In order to improve the estimation accuracy of multi-station joint Time difference of arrive/ Frequency difference of arrive (TDOA/FDOA) location with Bi-Iterative method, a solution for the position of target with Gauss-Newton optimal step length is proposed in this paper. First, get the initial estimation of target based on Two-stage weighted least-squares (TSWLS) algorithm, and then alternately solve the position and velocity of the target with Bi-Iterative method. In this paper, Gauss-Newton method is applied to iteratively solve the target position, including the detailed equations of the descending direction and the optimal iterative step length in each iterative process. Simulations are carried out to examine the algorithm's performance by comparing it with TSWLS method and Gauss-Newton method regardless of the step length. The results show that when Gauss noise variance is small, the estimation accuracy is close to Cramer Rao lower bound (CRLB) and the proposed method performs better than the other two methods. In addition, because the model which includes the position and velocity of the observation station and the target is in line with the over-the-horizon reality scene in this paper, our research has certain practical value. 相似文献
5.
6.
针对由静止卫星、准静止卫星构成的无源定位系统,该文研究了利用到达时间差/到达频率差(TDOA/FDOA)联合对地球表面固定辐射源的无源定位算法。与迭代搜索法相比,该算法不需要初值,不用迭代运算,仅仅需要解4次多项式方程,因此该算法更有效。文中推导了定位方程的求解算法,分析了多项式方程的多根情况,并提出了相应的解决办法;最后进行了蒙特卡罗仿真,仿真结果表明该算法具有适应能力强、定位精度高的优点。 相似文献
7.
双星无源定位系统对地海面雷达辐射进行定位时,存在脉冲信号频差参数提取的模糊问题。提出了一种基于虚拟双星的双时差粗定位方法,可有效解决频差测量的模糊,再结合时差/频差联合定位方法,分析了双星系统对雷达辐射源无源定位的可行性,给出了一些有用的结论。 相似文献
8.
The accuracy of a source location estimate is very sensitive to the presence of the random noise in the known sensor positions. This paper investigates the use of calibration sensors, each of which is capable of broadcasting calibration signals to other sensors as well as receiving the signals from the source and other calibration sensors, to reduce the loss in the source localization accuracy due to uncertainties in sensor positions. We begin the study with deriving the Cramer–Rao lower bound (CRLB) for source localization using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements when a single calibration sensor is available. The obtained CRLB result is then extended to the more general case with multiple calibration sensors. The performance improvement due to the use of calibration sensors is established analytically. We then propose a closed-form algorithm that can explore efficiently the calibration sensors to improve the source localization accuracy when the sensor positions are subject to random errors. We prove analytically that the newly developed localization method attains the CRLB accuracy under some mild approximations. Simulations verify the theoretical developments. 相似文献
9.
10.
针对互模糊函数进行时频差联合估计时运算量大、受采样率和数据量限制,两者估计精度难以同时提高的问题,结合雷达信号的周期性和低轨双星中信号信噪比高、时频差范围有限等特点,提出了一种通过时域周期延拓计算相关函数主值区间,再利用脉内信号计算混合积信号频谱,最后由Chirp-Z变换完成时频域的高效插值,获取时频差精确估计的分步算法。仿真结果表明该算法在降低运算量同时,保证了估计精度。 相似文献