首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   27篇
  国内免费   8篇
电工技术   4篇
综合类   8篇
化学工业   4篇
金属工艺   1篇
机械仪表   1篇
能源动力   1篇
水利工程   1篇
无线电   18篇
一般工业技术   13篇
冶金工业   1篇
自动化技术   80篇
  2025年   1篇
  2024年   4篇
  2023年   2篇
  2022年   7篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   18篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2003年   2篇
  2000年   4篇
  1998年   2篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
1.
基于区域的活动轮廓模型如Chan-Vese(CV)模型等以其能较好的处理图像的模糊边界和复杂拓扑结构而广泛运用于图像分割中.然而基于灰度分布均匀假设,该模型对于含灰度不一致性的目标分割结果较差.此外,纹理是周期性重复出现的细节,依靠灰度信息无法正确检测.针对这些问题,提出一种基于局部特征的自适应快速图像分割模型.一方面,利用两种区域项检测卡通部分和纹理部分的特征信息,在自适应的局部块中提取局部统计信息以克服卡通部分的灰度不一致性;另一方面,利用自适应的局部块中的纹理特征来计算背景和目标区域的Kullback-Leibler(KL)距离以检测图像的纹理部分.进一步,基于分裂Bregman方法对该模型进行快速求解.分别对医学和纹理图像进行了实验,准确性和时效性都有显著提高.  相似文献   
2.
为了克服经典模糊聚类图像分割算法对图像噪声的敏感性,该文提出结合高斯回归模型(GRM)和隐马尔科夫随机场(HMRF)的模糊聚类图像分割算法。该算法用信息熵正则化模糊C均值(FCM)的目标函数,再用KL(Kullback-Leibler)信息加以改进,并将HMRF和GRM模型应用到该目标函数中,其中HMRF模型通过先验概率建立标号场邻域关系,而GRM模型则在中心像素标号与其邻域像素标号一致的基础上建立特征场邻域关系。利用提出的算法和其它经典算法分别对模拟图像、真实SAR图像以及纹理图像进行了分割实验,并对分割结果进行精度评价。实验结果表明,该文提出的算法具有更高的分割精度。  相似文献   
3.
4.
基于Surfacelet变换和动态纹理的烟雾检测   总被引:1,自引:0,他引:1  
鉴于烟雾检测对火灾预警的重要作用,提出一种基于Surfacelet变换的动态纹理烟雾检测算法。先对图像序列进行Surfacelet变换,再对变换后的系数进行广义高斯建模,获得与系数相对应的模型参数作为特征,最后使用KL距离做相似性度量。与其他3种基于Surfacelet变换的烟雾检测方法进行对比,包括:使用均值和方差作为特征,支持向量机进行分类;使用均值和方差作为特征,欧式距离进行相似性度量;使用广义高斯模型参数作为特征,欧式距离进行相似性度量。实验结果表明,该算法可以提高烟雾检测准确性,降低误检率,有效去除类烟运动物体的干扰。  相似文献   
5.
Consider a discrete bivariate random variable (X, Y) with possible values 1, 2, ...,I forX and 1, 2, ...J forY. Suppose that putative families of conditional distributions, forX given values ofY and ofY given values ofX, are available. After reviewing conditions for compatibiity of such conditional specifications of the distribution of (X, Y), attention is focussed on the incompatible case. The Kullback-Leibler information function is shown to provide a convenient measure of inconsistency. Using it, algorithms are provided for computing the joint distribution for (X, Y) that is least discrepant from the given inconsistent conditional specifications. Other discrepancy measures are briefly discussed.  相似文献   
6.
The measure-theoretic definition of Kullback-Leibler relative-entropy (or simply KL-entropy) plays a basic role in defining various classical information measures on general spaces. Entropy, mutual information and conditional forms of entropy can be expressed in terms of KL-entropy and hence properties of their measure-theoretic analogs will follow from those of measure-theoretic KL-entropy. These measure-theoretic definitions are key to extending the ergodic theorems of information theory to non-discrete cases. A fundamental theorem in this respect is the Gelfand-Yaglom-Perez (GYP) Theorem [M.S. Pinsker, Information and Information Stability of Random Variables and Process, 1960, Holden-Day, San Francisco, CA (English ed., 1964, translated and edited by Amiel Feinstein), Theorem. 2.4.2] which states that measure-theoretic relative-entropy equals the supremum of relative-entropies over all measurable partitions. This paper states and proves the GYP-theorem for Rényi relative-entropy of order greater than one. Consequently, the result can be easily extended to Tsallis relative-entropy.  相似文献   
7.
地下水水质评价是保护水环境实现地下水资源可持续利用的重要基础工作。为了克服使用TOPSIS模型评价水质时常受到多指标决策的局限性,对原模型进行了两点改进:一是采用以主观赋权(AHP法)与客观赋权(熵权法)相结合确定组合权重;二是采用Kullback-Leibler距离代替传统方法中的欧式距离计算贴近度。利用改进后的TOPSIS模型,分别对邯郸市、焦作市地下水水质进行评价,评价结果分别与参考文献对比基本一致,表明改进后的TOPSIS模型,计算方法基本合理可行,具有一定的探索价值。  相似文献   
8.
The statistical information processing can be characterized by the likelihood function defined by giving an explicit form for an approximation to the true distribution. This mathematical representation, which is usually called a model, is built based on not only the current data but also prior knowledge on the object and the objective of the analysis. Akaike2,3) showed that the log-likelihood can be considered as an estimate of the Kullback-Leibler (K-L) information which measures the similarity between the predictive distribution of the model and the true distribution. Akaike information criterion (AIC) is an estimate of the K-L information and makes it possible to evaluate and compare the goodness of many models objectively. In consequence, the minimum AIC procedure allows us to develop automatic modeling and signal extraction procedures. In this article, we give a simple explanation of statistical modeling based on the AIC and demonstrate four examples of applying the minimum AIC procedure to an automatic transaction of signals observed in the earth sciences. Genshiro, Kitagawa, Ph.D.: He is a Professor in the Department of Prediction and Control at the Institute of Statistical Mathematics. He is currently Deputy Director of the Institute of Statistical Mathematics and Professor of Statistical Science at the Graduate University for Advanced Study. He obtained his Ph.D. from the Kyushu University in 1983. His primary research interests are in time series analysis, non-Gaussian nonlinear filtering, and statistical modeling. He has published over 50 research papers. He was awarded the 2nd Japan Statistical Society Prize in 1997. Tomoyuki Higuchi, Ph.D.: He is an Associate Professor in the Department of Prediction and Control at the Institute of Statistical Mathematics. He is currently an Associate Professor of Statistical Science at the Graduate University for Advanced Study. He obtained his Ph.D. from the University of Tokyo in 1989. His research interests are in statistical modeling of space-time data, stochastic optimization techniques, and data mining. He has published over 30 research papers.  相似文献   
9.
多层随机神经网络em算法   总被引:2,自引:1,他引:2  
本文讨论了基于微分流形框架随机神经网络学习算法,称为em学习算法;对于多层随机神经网络模型,我们从微分流形的角度分析它的对偶平坦流形结构,描述em算法对于多层前馈随机神经网络模型学习算法实现和加速技术。  相似文献   
10.
Towards fully probabilistic control design   总被引:2,自引:0,他引:2  
Miroslav Kárný 《Automatica》1996,32(12):1719-1722
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号