首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2211篇
  免费   340篇
  国内免费   115篇
电工技术   42篇
综合类   37篇
化学工业   221篇
金属工艺   32篇
机械仪表   23篇
建筑科学   6篇
矿业工程   2篇
能源动力   12篇
轻工业   14篇
石油天然气   1篇
武器工业   2篇
无线电   1329篇
一般工业技术   859篇
冶金工业   21篇
原子能技术   5篇
自动化技术   60篇
  2024年   3篇
  2023年   74篇
  2022年   20篇
  2021年   107篇
  2020年   98篇
  2019年   89篇
  2018年   87篇
  2017年   147篇
  2016年   124篇
  2015年   116篇
  2014年   166篇
  2013年   114篇
  2012年   147篇
  2011年   183篇
  2010年   127篇
  2009年   143篇
  2008年   165篇
  2007年   148篇
  2006年   129篇
  2005年   98篇
  2004年   66篇
  2003年   60篇
  2002年   63篇
  2001年   40篇
  2000年   43篇
  1999年   15篇
  1998年   11篇
  1997年   13篇
  1996年   16篇
  1995年   8篇
  1994年   4篇
  1993年   6篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1977年   4篇
  1975年   4篇
  1974年   4篇
排序方式: 共有2666条查询结果,搜索用时 15 毫秒
1.
Recently, circularly polarized organic light-emitting diodes (CP-OLEDs) fabricated with thermally activated delayed fluorescence (TADF) emitters are developed rapidly. However, most devices are fabricated by vacuum deposition technology, and developing efficient solution-processed CP-OLEDs, especially nondoped devices, is still a challenge. Herein, a pair of triptycene-based enantiomers, (S,S)-/(R,R)-TpAc-TRZ, are synthesized. The novel chiral triptycene scaffold of enantiomers avoids their intermolecular π–π stacking, which is conducive to their aggregation-induced emission characteristics and high photoluminescence quantum yield of 85% in the solid state. Moreover, the triptycene-based enantiomers exhibit efficient TADF activities with a small singlet-triplet energy gap (ΔEST) of 0.03 eV and delayed fluorescence lifetime of 1.1 µs, as well as intense circularly polarized luminescence with dissymmetry factors (|gPL|) of about 1.9 × 10−3. The solution-processed nondoped CP-OLEDs based on (S,S)-/(R,R)-TpAc-TRZ not only display obvious circularly polarized electroluminescence signals with gEL values of +1.5 × 10−3 and −2.0 × 10−3, respectively, but also achieve high efficiencies with external quantum, current, and power efficiency up to 25.5%, 88.6 cd A−1, and 95.9 lm W−1, respectively.  相似文献   
2.
The principles and design of “active” self‐propelling particles that can convert energy, move directionally on their own, and perform a certain function is an emerging multidisciplinary research field, with high potential for future technologies. A simple and effective technique is presented for on‐demand steering of self‐propelling microdiodes that move electroosmotically on water surface, while supplied with energy by an external alternating (AC) field. It is demonstrated how one can control remotely the direction of diode locomotion by electronically modifying the applied AC signal. The swimming diodes change their direction of motion when a wave asymmetry (equivalent to a DC offset) is introduced into the signal. The data analysis shows that the ability to control and reverse the direction of motion is a result of the electrostatic torque between the asymmetrically polarized diodes and the ionic charges redistributed in the vessel. This novel principle of electrical signal‐coded steering of active functional devices, such as diodes and microcircuits, can find applications in motile sensors, MEMs, and microrobotics.  相似文献   
3.
Greenish yellow organic light-emitting diodes (GYOLEDs) have steadily attracted researcher's attention since they are important to our life. However, their performance significantly lags behind compared with the three primary colors based OLEDs. Herein, for the first time, an ideal host-guest system has been demonstrated to accomplish high-performance phosphorescent GYOLEDs, where the guest concentration is as low as 2%. The GYOLED exhibits a forward-viewing power efficiency of 57.0 lm/W at 1000 cd/m2, which is the highest among GYOLEDs. Besides, extremely low efficiency roll-off and voltages are achieved. The origin of the high performance is unveiled and it is found that the combined mechanisms of host-guest energy transfer and direct exciton formation on the guest are effective to furnish the greenish yellow emission. Then, by dint of this ideal host-guest system, a simplified but high-performance hybrid white OLED (WOLED) has been developed. The WOLED can exhibit an ultrahigh color rendering index (CRI) of 92, a maximum total efficiency of 27.5 lm/W and a low turn-on voltage of 2.5 V (1 cd/m2), unlocking a novel avenue to simultaneously achieve simplified structure, ultrahigh CRI (>90), high efficiency and low voltage.  相似文献   
4.
Over the last decade, narrow-band emitters have been recognized as key enablers for light emitting diodes (LEDs) backlights in liquid-crystal displays (LCDs) by competing with other display technologies. Today, efforts have been devoted to the exploration of narrow-band green/red luminescent materials with high quantum efficiency and excellent stability to optimize the performance of LED backlights. This review first presents an overview of the significant progress made in the development of narrow-band emitters used in LED backlights for LCDs with the emphasis on the versatile materials databases from doped phosphors to luminescent II–VI, III-V semiconductor quantum dots, and the recent halide perovskites nanocrystals and bulk metal halides. Subsequently, the correlation of structure-luminescence properties, and the device performance optimization of these emitters have been analyzed. The focus is placed on summarizing and comparing the remarkable examples of outdated and new narrow-band luminescent materials as potential candidates in LED backlights. Finally, the outlooks and challenges in discovering new narrow-band emitters have been proposed.  相似文献   
5.
The strong tendency of organic nanoparticles to rapidly self‐assemble into highly aligned superlattices at room temperature when solution‐cast from dispersions or spray‐coated directly onto various substrates is described. The nanoparticle dispersions are stable for years. The novel precipitation process used is believed to result in molecular distances and alignments in the nanoparticles that are not normally possible. Functional organic light‐emitting diodes (OLEDs)—which have the same host–dopant emissive‐material composition—with process‐tunable electroluminescence have been built with these nanoparticles, indicating the presence of novel nanostructures. For example, only changing the conditions of the precipitation process changes the OLED emission from green light to yellow.  相似文献   
6.
在陷阱电荷限制电流传导理论的基础上,提出了双层有机电致发光器件的数值模型,研究了结构为"阳极/空穴输运层(HTL)/发光层(EML)/阴极"的器件中电流密度和量子效率随有机层的特征陷阱能量、陷阱密度和载流子迁移率的依赖关系. 研究发现,对于给定的HTL和EML的特征陷阱能量、陷阱密度和载流子迁移率,存在一个最优的HTL和EML之间的厚度比率,在此最优厚度比下,器件的电流密度和量子效率达到最大.通过有机层厚度的优化,器件的电流密度和量子效率可提高多达两个数量级.另外,还研究了最优厚度比随有机层特征陷阱能量、总陷阱密度和载流子迁移率之间的定量关系.  相似文献   
7.
In this paper, we describe a method for increasing the external efficiency of polymer light‐emitting diodes (LEDs) by coupling out waveguided light with Bragg gratings. We numerically model the waveguide modes in a typical LED structure and demonstrate how optimizing layer thicknesses and reducing waveguide absorption can enhance the grating outcoupling. The gratings were created by a soft‐lithography technique that minimizes changes to the conventional LED structure. Using one‐dimensional and two‐dimensional gratings, we were able to increase the forward‐directed emission by 47 % and 70 %, respectively, and the external quantum efficiency by 15 % and 25 %.  相似文献   
8.
Efficient blue‐, green‐, and red‐light‐emitting organic diodes are fabricated using binuclear platinum complexes as phosphorescent dopants. The series of complexes used here have pyrazolate bridging ligands and the general formula CNPt(μ‐pz)2PtCN (where CN = 2‐(4′,6′‐difluorophenyl)pyridinato‐N,C2′, pz = pyrazole ( 1 ), 3‐methyl‐5‐tert‐butylpyrazole ( 2 ), and 3,5‐bis(tert‐butyl)pyrazole ( 3 )). The Pt–Pt distance in the complexes, which decreases in the order 1 > 2 > 3 , solely determines the electroluminescence color of the organic light‐emitting diodes (OLEDs). Blue OLEDs fabricated using 8 % 1 doped into a 3,5‐bis(N‐carbazolyl)benzene (mCP) host have a quantum efficiency of 4.3 % at 120 Cd m–2, a brightness of 3900 Cd m–2 at 12 V, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.11, 0.24). Green and red OLEDs fabricated with 2 and 3 , respectively, also give high quantum efficiencies (~ 6.7 %), with CIE coordinates of (0.31, 0.63) and (0.59, 0.46), respectively. The current‐density–voltage characteristics of devices made using dopants 2 and 3 indicate that hole trapping is enhanced by short Pt–Pt distances (< 3.1 Å). Blue electrophosphorescence is achieved by taking advantage of the binuclear molecular geometry in order to suppress dopant intermolecular interactions. No evidence of low‐energy emission from aggregate states is observed in OLEDs made with 50 % 1 doped into mCP. OLEDs made using 100 % 1 as an emissive layer display red luminescence, which is believed to originate from distorted complexes with compressed Pt–Pt separations located in defect sites within the neat film. White OLEDs are fabricated using 1 and 3 in three different device architectures, either with one or two dopants in dual emissive layers or both dopants in a single emissive layer. All the white OLEDs have high quantum efficiency (~ 5 %) and brightness (~ 600 Cd m–2 at 10 V).  相似文献   
9.
The electronic properties, carrier injection, and transport into poly(9,9‐dioctylfluorene) (PFO), PFO end‐capped with hole‐transporting moieties (HTM), PFO–HTM, and PFO end‐capped with electron‐transporting moieties (ETM), PFO–ETM, were investigated. The data demonstrate that charge injection and transport can be tuned by end‐capping with HTM and ETM, without significantly altering the electronic properties of the conjugated backbone. End‐capping with ETM resulted in more closely balanced charge injection and transport. Single‐layer electrophosphorescent light‐emitting diodes (LEDs), fabricated from PFO, PFO–HTM and PFO–ETM as hosts and tris[2,5‐bis‐2′‐(9′,9′‐dihexylfluorene)pyridine‐κ2NC3′]iridium(III ), Ir(HFP)3 as the guest, emitted red light with brightnesses of 2040 cd m–2, 1940 cd m–2 and 2490 cd m–2 at 290 mA cm–2 (16 V) and with luminance efficiencies of 1.4 cd A–1, 1.4 cd A–1 and 1.8 cd A–1 at 4.5 mA cm–2 for PFO, PFO–HTM, and PFO–ETM, respectively.  相似文献   
10.
不同表面预处理对有机电致发光显示器性能的影响   总被引:1,自引:1,他引:0  
从生产角度研究了基板表面的预处理工艺对OLED性能的影响,分别用UVOzone、氧Plasma以及两者相结合的方式对基板进行表面处理,并按照生产工艺制作器件,从接触角、方阻以及光电特性等测试结果对各种表面处理的样品进行比较。结果表明以上处理都改善了器件性能,不同程度提高了器件的清洁度、亮度和发光效率,其中UVOzone和氧Plasma结合的方式处理效果最为显著,器件在10V时亮度达到79920cd/m2,比其他两种处理方式亮度提高约25%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号