首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   1篇
  国内免费   1篇
电工技术   1篇
化学工业   30篇
金属工艺   1篇
机械仪表   4篇
矿业工程   1篇
能源动力   2篇
无线电   6篇
一般工业技术   16篇
原子能技术   3篇
  2023年   2篇
  2021年   4篇
  2020年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   1篇
  2011年   11篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
We have applied near-edge X-ray absorption fine structure (NEXAFS) to characterize the surface and bulk properties of LixNi1–xO catalysts. In our experimental set-up, NEXAFS spectra of powder materials could be obtained by measuring the intensity of either electron-yield or fluorescence-yield. While the electron-yield method is sensitive only to the top few atomic layers, the fluorescence-yield method can detect species up to a few thousands angstroms deep into the bulk structure. The ability to distinguish surface and bulk compositions is demonstrated in studies of a number of Li0.5Ni0.5O samples, of which the surface compositions vary as a function of preparation procedures. In addition, NEXAFS investigations following the reaction of LixNi1–xO with CH4 have also been carried out and the results indicate that the initial surface reaction intermediates are Li2CO3.  相似文献   
2.
Lindsay  R.  Thornton  G. 《Topics in Catalysis》2002,18(1-2):15-19
We review our X-ray absorption spectroscopy studies of adsorbate geometries on the O-terminated (000 ) and Zn-terminated (0001) basel faces, as well as the non-polar (10 0) prism face of ZnO. Studies employing near-edge X-ray absorption fine-structure (NEXAFS) and surface X-ray absorption fine-structure (SEXAFS) are included.  相似文献   
3.
We have studied the stability of the resistive switching process in the Al/(In2O3)0.9(SnO2)0.1/TiO2 assembly grown by atomic layer deposition. Besides electrical characterization the effect of electric field on the atomic electronic structure of the TiO2 layer was studied using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The region of the current instability in the I-V characteristics was revealed. Presumably this current instability is supported by the amorphous structure of the TiO2 film but is initiated by the surface morphology of the Al substrate. A formation of the O2 molecules was established which occurs specifically in the region of the current instability that is a result of electrical Joule heating manifestation.  相似文献   
4.
Together with a series of mechanical tests, the interactions and potential bonding between polymeric fibers and cementitious materials were studied using scanning transmission X-ray microscopy (STXM) and microtomography (μCT). Experimental results showed that these techniques have great potential to characterize the polymer fiber-hydrated cement-paste matrix interface, as well as differentiating the chemistry of the two components of a bi-polymer (hybrid) fiber – the polypropylene core and the ethylene acrylic acid copolymer sheath. Similarly, chemical interactions between the hybrid fiber and the cement hydration products were observed, indicating the chemical bonding between the sheath and the hardened cement paste matrix. Microtomography allowed visualization of the performance of the samples, and the distribution and orientation of the two types of fiber in mortar. Beam flexure tests confirmed improved tensile strength of mixes containing hybrid fibers, and expansion bar tests showed similar reductions in expansion for the polypropylene and hybrid fiber mortar bars.  相似文献   
5.
Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was employed to help determine the structure of boron nitride films grown by bias-enhanced chemical vapor deposition in a low-density supersonic arcjet flow. BN films containing 0.90% cubic boron nitride were analyzed by NEXAFS and compared with c-BN and h-BN reference spectra. The mainly cubic films have been shown previously to be nanocrystalline, which leads to the inability to obtain structural information from Raman scattering spectra. However, with NEXAFS, the nanocrystalline nature of the films does not strongly affect the structural interpretation. It is shown that films deposited with a bias of −75 V are primarily sp3 bonded. This high sp3 bonding character agrees with previous measrements based on infraredtransmission and reflectance spectroscopy, as well as X-ray photoelectron spectroscopy.  相似文献   
6.
7.
The microstructure of solution‐processed organometallic lead halide perovskite thin films prepared by the “gas‐assisted” method is investigated with synchrotron‐based techniques. Using a combination of GIWAXS and NEXAFS spectroscopy the orientational alignment of CH3NH3PbI3 crystallites and CH3NH3+ cations are separately probed. The GIWAXS results reveal a lack of preferential orientation of CH3NH3PbI3 crystallites in 200–250 nm thick films prepared on both planar TiO2 and mesoporous TiO2. Relatively high efficiencies are observed for device based on such films, with 14.3% achieved for planar devices and 12% for mesoporous devices suggesting that highly oriented crystallites are not crucial for good cell performance. Oriented crystallites however are observed in thinner films (≈60 nm) deposited on planar TiO2 (but not on mesoporous TiO2) indicating that the formation of oriented crystallites is sensitive to the kinetics of solvent evaporation and the underlying TiO2 morphology. NEXAFS measurements on all samples found that CH3NH3+ cations exhibit a random molecular orientation with respect to the substrate. The lack of any NEXAFS dichroism for the thin CH3NH3PbI3 layer deposited on planar TiO2 in particular indicates the absence of any preferential orientation of CH3NH3+ cations within the CH3NH3PbI3 unit cell for as‐prepared layers, that is, without any electrical poling.  相似文献   
8.
The effect of annealing at 1400 °C in argon on the bond structure of graphite ball milled for 100 h at 400 rpm in polar (water) and in non-polar (n-dodecane) liquids was investigated primarily by near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and transmission electron microscopy (TEM). Carbon K-edge NEXAFS allows the distortion of bonds in the hexagonal lattice to be investigated. It is shown that in-plane sp2 bonds are strained and distorted after ball milling because sp3 bonds are introduced. Not surprisingly, annealing of the milled product restores sp2 bonds but at the same time, coiling and formation of tube-like structures takes place. It is well established that graphite is not formed on annealing, and hence the results shown here demonstrate that the loss of sp3 carbons on annealing must proceed via a different mechanism by which they are formed by milling.  相似文献   
9.
Carbon-encapsulated iron carbide nanoparticles have been produced by co-carbonization of a mixture of an aromatic heavy oil and ferrocene at 450 °C under autogenous pressure. Transformations of the morphology and electronic structure of nanoparticles induced by air oxidation and subsequent heat treatment in a nitrogen atmosphere were examined using transmission electron microscopy, X-ray diffraction, near edge X-ray absorption fine structure spectroscopy, and X-ray emission spectroscopy. It was found that hollow nanoparticles, composed of iron oxides and oxidized carbon, were developed with thermal air oxidation of the initial product at 280 °C for 5 h. The mild oxidation of the product (250 °C for 3 h) followed by the carbonization at 500–550 °C yielded the hollow nanoparticles containing iron carbide/oxides and defective graphite-like carbon. The further annealing of nanoparticles at 1000 °C produced carbon nanocapsules with highly graphitized carbon walls and partially filled by spherical iron carbide nanoparticles.  相似文献   
10.
In order to understand the mechanism of the selective catalysis of nitrogen oxide reduction by hydrocarbons on a ZnAl2O4/Al2O3 catalyst, the NO adsorption step has been studied as a function of the surface state of the catalyst by using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen K edge. The role of oxygen, whose presence is essential for the reaction to occur, is examined. In absence of a preliminary surface oxidation, nitric oxide was found not to be adsorbed on the ZnAl2O4/Al2O3 surface. After this preliminary treatment, we observed that the nitrogen atom of the NO molecule was linked to a surface oxygen with an adsorption mode parallel or slightly tilted with respect to the catalyst surface. Through these experiments we clearly demonstrate the advantages of soft X-ray experiments in catalysis research even in the case of practical application to real materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号