首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1927篇
  免费   5篇
  国内免费   21篇
电工技术   8篇
综合类   7篇
化学工业   927篇
金属工艺   52篇
机械仪表   18篇
建筑科学   5篇
矿业工程   3篇
能源动力   68篇
轻工业   13篇
石油天然气   9篇
无线电   102篇
一般工业技术   732篇
冶金工业   1篇
原子能技术   2篇
自动化技术   6篇
  2023年   26篇
  2022年   36篇
  2021年   32篇
  2020年   33篇
  2019年   31篇
  2018年   46篇
  2017年   53篇
  2016年   76篇
  2015年   63篇
  2014年   78篇
  2013年   128篇
  2012年   117篇
  2011年   211篇
  2010年   176篇
  2009年   147篇
  2008年   131篇
  2007年   131篇
  2006年   104篇
  2005年   138篇
  2004年   66篇
  2003年   63篇
  2002年   25篇
  2001年   19篇
  2000年   8篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1992年   2篇
  1989年   1篇
排序方式: 共有1953条查询结果,搜索用时 15 毫秒
1.
Refining ceramic microstructures to the nanometric range to minimize light scattering provides an interesting methodology for developing novel optical ceramic materials. In this work, we reported the fabrication and properties of a new nanocomposite optical ceramic of Gd2O3-MgO. The citric acid sol-gel combustion method was adopted to fabricate Gd2O3-MgO nanocomposites with fine-grain sizes, dense microstructures and homogeneous phase domains. Nanopowders with low agglomeration and improved sinterability can be obtained by elaborating Φ values. Further refining of the microstructure of the nanocomposites was achieved by elaborating the hot-pressing conditions. The sample sintered at 65 MPa and 1300 °C showed a quite high hardness value of 14.3 ± 0.2 GPa, a high transmittance of 80.3 %–84.7 % over the 3?6 μm wavelength range, due mainly to its extremely fine-grain size of Gd2O3 and MgO (93 and 78 nm, respectively) and high density.  相似文献   
2.
2,6-Bis(5-amino-1H-benzimidazol-2-yl)pyridine was prepared and characterized by Fourier transform infrared spectroscopy, elemental analysis, 1H-NMR, and 13C-NMR spectroscopic methods. Then a new poly(benzimidazole-amide) was synthesized by polymerization of the corresponding diamine and isophthalic acid. The obtained poly(benzimidazole-amide) exhibited good yield and high thermal stability. Due to the existence of benzimidazole moieties in polymer’s structure, it has the tendency to form complexes with metal ions. So, a new poly(benzimidazole-amide)/Co nanocomposite was prepared. Morphological studies revealed that metal nanoparticles were dispersed in the polymer matrix without any aggregation. poly(benzimidazole-amide)/Co nanocomposite was used as a catalyst in the oxidation of ethyl benzene to acetophenone with tert-butyl hydroperoxide.  相似文献   
3.
《Ceramics International》2015,41(7):8614-8622
SnO2–ZnO nanocomposite thin films, prepared by a simple carbothermal reduction based vapor deposition method, were irradiated with 8 MeV Si3+ ions for engineering the morphological and optical properties. The surface morphology of the nanocomposites was studied by atomic force microscopy (AFM), while the optical properties were investigated by photoluminescence spectroscopy (PL) and Raman spectroscopy. AFM studies on the irradiated samples revealed growth of nanoparticles at lower fluence and a significant change in surface morphology leading to the formation of nanosheets and their aggregates at higher fluences. A tentative mechanism underlying the observed ion induced evolution of surface morphology of SnO2–ZnO nanocomposite is proposed. PL studies revealed strong enhancement in the UV emissions from the nanocomposite thin film at lower fluence, while a drastic decrease in the UV emissions along with a significant enhancement in the defect emissions has been observed at higher fluences.  相似文献   
4.
Hydrothermally prepared zinc oxide nanorods are sulphonated (S–ZnO NR) and incorporated into 15% Sulphonated Poly (1,4-Phenylene Ether Ether Sulfone) (SPEES) to improve the hydrophilicity, water uptake and ion transfer capacity. Water uptake and ion transfer capacity increased to 34.6 ± 0.6% and 2.0 ± 0.05 meq g?1 from 29.8 ± 0.3% and 1.4 ± 0.04 meq g?1 by adding 7.5 wt% S–ZnO NR to SPEES. Morphological studies show the prepared S–ZnO NR is well dispersed in the polymer matrix. SPEES +7.5 wt% S–ZnO NR membrane exhibits optimum performance after three-weeks of continual operation in a fabricated microbial fuel cell (MFC) to produce a maximum power density of 142 ± 1.2 mW m?2 with a reduced biofilm compared to plain SPEES (59 ± 0.8 mW m?2), unsulphonated filler incorporated SPEES (SPEES + 7.5 wt% ZnO, 68 ± 1.1 mW m?2) and Nafion (130 ± 1.5 mW m?2) thereby suggesting its suitability as a sustainable and improved cation exchange membrane (CEM) for MFCs.  相似文献   
5.
Poly(3-hydroxyalkanoate)s, PHAs, have been covalently grafted onto the surface of multi-walled carbon nanotubes, MWCNTs, providing nanofillers (MWCNT-graft-PHAs) with enhanced compatibility and reinforcement effect towards PHAs. MWCNTs were first modified by in-situ generated diazonium cations obtained from a hydroxyl-containing aniline derivative, yielding MWCNTs with reactive hydroxyl surface groups, MWCNT-OH. Then, MWCNT-graft-PHAs were obtained by direct, i.e. without using any catalyst, transesterification approach. The successful chemical modification of MWCNTs surface was evidenced by Raman spectroscopy and XPS analysis confirming the covalent grafting of PHA on MWCNT. 3-Dimension mats were further produced through electrospinning of a PHA/MWCNT-graft-PHA solution providing nanocomposites with well-defined nanofibrous morphology. No aggregation of the MWCNTs was evidenced by SEM attesting that the grafting of PHA onto MWCNT improved their dispersion within the PHA matrix and consequently, the properties of the corresponding nanomaterials. Indeed, mechanical analysis results have shown that nanofibers loaded with MWCNT-graft-PHA (3 wt%) displayed excellent properties with an increase (+41%) of the tensile strain at break without any decrease of the high elastic modulus as compared to pristine PHA (131 MPa).  相似文献   
6.
Yuqin LiHatsuo Ishida 《Polymer》2003,44(21):6571-6577
Polystyrene nanocomposites have been prepared via solution intercalation method. Combination of wide-angle X-ray diffraction and thermogravimetric analysis is used to study the effect of solvents on the morphology of the nanocomposites as a function of the amount of residual solvent. d-Spacing of the polystyrene nanocomposites has a minimum value when the residual solvent concentration is between 2 and 4 wt%. Different interaction level between the solvent molecules and polymer chains is considered to be the reason for this special d-spacing change behavior. By comparing the solution intercalation of polystyrene and poly(ethyl methacrylate) from different solvents, it is concluded that the interactions between polymer-surfactant, solvent-surfactant, and polymer-solvent play important role for the solution intercalation of polymers.  相似文献   
7.
金属/Al2O3基纳米复合材料研究最新进展   总被引:2,自引:0,他引:2  
金属/Al2O3纳米复合材料在保持原有金属的功能特性时,还可以获得 很好的力学性能,是有良好发展前景的一种纳米复合材料。本文回顾了近年来金属/Al2O3基纳米复合材料在制备工艺,微观结构和力学性能,增韧强化机理方面的最新进展,并指出了今后的研究方向。  相似文献   
8.
Non‐volatile solid‐state memory cells based on composites of metal nanoparticles and polymers are embedded in organic semiconducting host materials. This paper presents data from a wide range of materials and device structures and shows that the switching phenomenon is commonly observed.  相似文献   
9.
A novel finger‐sensing nanocomposite with remarkable and reversible piezoresistivity is successfully fabricated by dispersing homogeneously conductive graphite nanosheets (GNs) in a silicone rubber (SR) matrix. Because of the high aspect ratio of the graphite nanosheets, the nanocomposite displays a very low percolation threshold. The SR/GN nanocomposite with a volume fraction of conductive nanosheets closest to that for the percolation threshold presents a sharp positive‐pressure coefficient effect of the resistivity under very low pressure, namely, in the finger‐pressure range (0.3–0.7 MPa), whereby the abrupt transition could be attributed to compressive‐stress‐induced deformation of the conducting network. The super‐sensitive piezoresistive behavior of the nanocomposite is accounted for by an extension of the tunneling conduction theory which provides a good approximation to the piezoresistive effect.  相似文献   
10.
A SAXS method for the quantitative assessment of the morphology of polymer layered silicate nanocomposites is proposed. Fitting the SAXS patterns, the number of clay layers, the periodicity of the layers in the tactoids, the thickness of the regions interposed between the clay platelets and their distributions can be measured. A good agreement with TEM data was obtained, avoiding the inconsistencies with microscopical observations often reported in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号