首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   3篇
  国内免费   3篇
化学工业   3篇
能源动力   2篇
无线电   58篇
一般工业技术   8篇
自动化技术   2篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   16篇
  2013年   6篇
  2012年   5篇
  2011年   10篇
  2009年   5篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
沈澍 《半导体学报》2013,34(5):055003-5
An OFET charge model,as well as its parameter extraction method are presented.The fitting results are also discussed and different OFET model characters are compared.Some basic OFET based digital circuit blocks, including the inverter,NAND,and ring oscillator are also developed,which would be considered to be helpful to the design of relevant applications.  相似文献   
2.
3.
《Organic Electronics》2014,15(3):646-653
A planar water gated OFET (WG-OFET) structure is fabricated by patterning gate, source and drain electrodes on the same plane at the same time. Transistor output characteristics of this novel structure employing commercial regioregular poly(3-hexylthiophene) (rr-P3HT) as polymer semiconductor and deionized (DI) water as gate dielectric show successful field effect transistor operation with an on–off current ratio of 43 A/A and transconductance of 2.5 μA/V. These output characteristics are improved using P3HT functionalized with poly(ethylene glycol) (PEG) (P3HT-co-P3PEGT), which is more hydrophilic, leading to on–off ratio of 130 A/A and transconductance of 3.9 μA/V. Utilization of 100 mM NaCl solution instead of DI water significantly increases the on–off ratio to 141 A/A and transconductance to 7.17 μA/V for commercial P3HT and to 217 A/A and to 11.9 μA/V for P3HT-co-P3PEGT. Finally, transistors with improved transconductances are used to build digital inverters with improved characteristics. Gain of the inverters employing P3HT and P3HT-co-P3PEGT are measured as 2.9 V/V and 10.3 V/V, respectively, with 100 mM NaCl solution.  相似文献   
4.
The organic field effect transistors (OFETs) with regioregular poly 3-hexylthiophene (rr-P3HT) and hexafluoro-2-propanol-substituted polysiloxane (SXFA) as an organic layer, have been used for detection of explosive vapors with excellent sensitivity of less than 70 ppt for 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and less than 100 ppt for 2,4,6-trinitrotoluene (TNT). The sensor response (% change in saturation current) was found to be 125 ± 10% for TNT and 90 ± 10% for RDX. It was also observed that the incorporation of CuII tetraphenylporphyrin (CuTPP) into rr-P3HT/SXFA matrix resulted in an improved selectivity for the vapors of nitro based analytes (TNT, RDX and DNB) as compared to the vapors of non explosive oxidizing agents such as nitrobenzene (NB), benzoquinone (BQ) and benzophenone (BP). This is attributed to the increased binding of the vapors containing nitro compound to the thin films due to the presence of CuTTP. Spin coated thin films were further characterized by Atomic Force Microscopy (AFM) and Electrostatic Force Microscopy (EFM).  相似文献   
5.
《Organic Electronics》2014,15(4):920-925
Gelatin is a natural protein, which works well as the gate dielectric for N,N-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) organic field-effect transistors (OFETs). An aqueous solution process was applied to form the gelatin gate dielectric on poly(ethylene terephthalate) (PET) by spin-coating and subsequent casting. The field-effect mobility in the saturation regime (μFE,sat) and the threshold voltage (VT) values of a typical 40 nm PTCDI-C8 OFET are (0.22 cm2 V−1 s−1, 55 V) in vacuum and (0.74 cm2 V−1 s−1, 2.6 V) in air ambient. The maximum voltage shift in hysteresis is also reduced from 10 V to 2 V when the operation environment for PTCDI-C8 OFETs is changed from vacuum to air ambient. Nevertheless, a slight reduction of electron mobility was found when the device was stressed in the air ambient. The change in the device performance has been attributed to the charged ions generation owing to water absorption in gelatin in air ambient.  相似文献   
6.
有机薄膜场效应晶体管(OFET)在电子报纸、智能识别卡、大面积平板显示及柔性显示、传感器、数字逻辑电路等方面具有非常广阔的应用前景。在OFET家族中,聚合物半导体膜因具有机械性能好、热稳定性高、成膜方法简单经济以及特别适合于制备大面积器件等特点,而使聚合物薄膜场效应晶体管(PFET)近几年来倍受关注。本文概述PFET的基本结构和工作原理、器件设计和制备以及相关的研究进展,最后讨论PFET器件未来的研究方向。  相似文献   
7.
在大气环境下N型有机薄膜晶体管(OFET)的性能不稳定,为提高晶体管在大气环境稳定性,该文分别制作了SiO2单绝缘层器件和SiO2/PMMA双绝缘层器件。采用N型新材料PTCDI-C8作为有源层,Ag作为源、漏电极,对制作的不同绝缘层的器件进行聚对二甲苯的封装,对有源层进行形貌和晶体结构分析。并进行电流-电压(I-V)曲线测试。在相同工作电压下,双绝缘层器件比单绝缘层器件具有更大的场效应迁移率、开关电流比和更小的阈值电压。  相似文献   
8.
Low voltage operating organic devices and circuits have been realized using atomic layer deposition deposited aluminum oxide thin film as dielectric layer. The dielectric film has per unit area capacitance of 165 nF/cm2 and leakage current of 1 nA/cm2 at 1 MV/cm. The devices and circuits use the small-molecule hydrocarbon pentacene as the active semiconductor material. Transistors,inverters,and ring oscillators with operating voltage lower than 5 V were obtained. The mobility of organic field-effect transis...  相似文献   
9.
Control of the threshold voltage and the subthreshold swing is critical for low voltage transistor operation. In this contribution, organic field-effect transistors (OFETs) operating at 1 V using ultra-thin (∼4 nm), self-assembled monolayer (SAM) modified aluminium oxide layers as the gate dielectric are demonstrated. A solution-processed donor–acceptor semiconducting polymer poly(3,6-di(2-thien-5-yl)-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione)thieno[3,2-b]thiophene) (PDPP2TTT) is used as the active layer. It is shown that the threshold voltage of the fabricated transistors can be simply tuned by carefully controlling the composition of the applied SAM. The optimised OFETs display threshold voltages around 0 V, low subthreshold slopes (150 ± 5 mV/dec), operate with negligible hysteresis and show average saturated field-effect mobilities in excess of 0.1 cm2/V s at 1 V.  相似文献   
10.
In this work, a new type organic field effect transistor (OFET) based write-once read-many memory (WORM) device was developed. The device uses an ultraviolet (UV) cross-linkable matrix polymer mixed with ionic compounds to form an ion-dispersed gate dielectric layer. Under an applied gate voltage bias, migration of cations and anions in opposite directions forms space charge polarization in the gate dielectric layer, resulting in change of the electrical characteristics. It is shown that, with UV illumination to cross-link the matrix polymer, the formed space charge polarization can be stabilized. Therefore, the OFET can be operated as a WORM with the applied voltage bias to define the polarization and in turn the stored data, and the UV illumination to stabilize the stored data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号