首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4458篇
  免费   516篇
  国内免费   324篇
电工技术   85篇
综合类   99篇
化学工业   1019篇
金属工艺   220篇
机械仪表   30篇
建筑科学   13篇
矿业工程   14篇
能源动力   350篇
轻工业   31篇
石油天然气   95篇
武器工业   6篇
无线电   1968篇
一般工业技术   1158篇
冶金工业   57篇
原子能技术   49篇
自动化技术   104篇
  2024年   10篇
  2023年   144篇
  2022年   75篇
  2021年   162篇
  2020年   179篇
  2019年   184篇
  2018年   152篇
  2017年   244篇
  2016年   192篇
  2015年   200篇
  2014年   271篇
  2013年   239篇
  2012年   266篇
  2011年   364篇
  2010年   253篇
  2009年   269篇
  2008年   307篇
  2007年   277篇
  2006年   262篇
  2005年   192篇
  2004年   145篇
  2003年   126篇
  2002年   123篇
  2001年   123篇
  2000年   117篇
  1999年   64篇
  1998年   62篇
  1997年   47篇
  1996年   61篇
  1995年   28篇
  1994年   28篇
  1993年   25篇
  1992年   20篇
  1991年   7篇
  1990年   20篇
  1989年   14篇
  1988年   11篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   7篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   4篇
  1974年   4篇
排序方式: 共有5298条查询结果,搜索用时 15 毫秒
1.
Metal-support interaction and catalyst pretreatment are important for industrial catalysis. This work investigated the effect of supports (SiO2, CeO2, TiO2 and ZrO2) for Cu–Pd catalyst with high Cu/Pd ratio (Cu/Pd = 33.5) regarding catalyst cost, and the reduction temperatures of 350 °C and 550 °C were compared. The activity based on catalyst weight follows the order of Si > Ce > Zr > Ti when reduced at 350 °C. The reduction temperature leads to the surface reconstruction over the SiO2, CeO2 and TiO2 catalysts, while results in phase transition over Cu–Pd/ZrO2. The effect of reduction temperature on catalytic performance is prominent for the SiO2 and ZrO2 supported catalysts but not for the CeO2 and TiO2 ones. Among the investigated catalysts, Zr-350 exhibits the highest methanol yield. This work reveals the importance of the supports and pretreatment conditions on the physical-chemical properties and the catalytic performance of the Cu–Pd bimetallic catalysts.  相似文献   
2.
Recently, circularly polarized organic light-emitting diodes (CP-OLEDs) fabricated with thermally activated delayed fluorescence (TADF) emitters are developed rapidly. However, most devices are fabricated by vacuum deposition technology, and developing efficient solution-processed CP-OLEDs, especially nondoped devices, is still a challenge. Herein, a pair of triptycene-based enantiomers, (S,S)-/(R,R)-TpAc-TRZ, are synthesized. The novel chiral triptycene scaffold of enantiomers avoids their intermolecular π–π stacking, which is conducive to their aggregation-induced emission characteristics and high photoluminescence quantum yield of 85% in the solid state. Moreover, the triptycene-based enantiomers exhibit efficient TADF activities with a small singlet-triplet energy gap (ΔEST) of 0.03 eV and delayed fluorescence lifetime of 1.1 µs, as well as intense circularly polarized luminescence with dissymmetry factors (|gPL|) of about 1.9 × 10−3. The solution-processed nondoped CP-OLEDs based on (S,S)-/(R,R)-TpAc-TRZ not only display obvious circularly polarized electroluminescence signals with gEL values of +1.5 × 10−3 and −2.0 × 10−3, respectively, but also achieve high efficiencies with external quantum, current, and power efficiency up to 25.5%, 88.6 cd A−1, and 95.9 lm W−1, respectively.  相似文献   
3.
《Ceramics International》2022,48(11):15056-15063
Hydrogen (H2) sensors based on metal oxide semiconductors (MOS) are promising for many applications such as a rocket propellant, industrial gas and the safety of storage. However, poor selectivity at low analyte concentrations, and independent response on high humidity limit the practical applications. Herein, we designed rGO-wrapped SnO2–Pd porous hollow spheres composite (SnO2–Pd@rGO) for high performance H2 sensor. The porous hollow structure was from the carbon sphere template. The rGO wrapping was via self-assembly of GO on SnO2-based spheres with subsequent thermal reduction in H2 ambient. This sensor exhibited excellently selective H2 sensing performances at 390 °C, linear response over a broad concentration range (0.1–1000 ppm) with recovery time of only 3 s, a high response of ~8 to 0.1 ppm H2 in a minute, and acceptable stability under high humidity conditions (e. g. 80%). The calculated detection limit of 16.5 ppb opened up the possibility of trace H2 monitoring. Furthermore, this sensor demonstrated certain response to H2 at the minimum concentration of 50 ppm at 130 °C. These performances mainly benefited from the special hollow porous structure with abundant heterojunctions, the catalysis of the doped-PdOx, the relative hydrophobic surface from rGO, and the deoxygenation after H2 reduction.  相似文献   
4.
The principles and design of “active” self‐propelling particles that can convert energy, move directionally on their own, and perform a certain function is an emerging multidisciplinary research field, with high potential for future technologies. A simple and effective technique is presented for on‐demand steering of self‐propelling microdiodes that move electroosmotically on water surface, while supplied with energy by an external alternating (AC) field. It is demonstrated how one can control remotely the direction of diode locomotion by electronically modifying the applied AC signal. The swimming diodes change their direction of motion when a wave asymmetry (equivalent to a DC offset) is introduced into the signal. The data analysis shows that the ability to control and reverse the direction of motion is a result of the electrostatic torque between the asymmetrically polarized diodes and the ionic charges redistributed in the vessel. This novel principle of electrical signal‐coded steering of active functional devices, such as diodes and microcircuits, can find applications in motile sensors, MEMs, and microrobotics.  相似文献   
5.
Poly (linoleic acid)-g-poly(methyl methacrylate) (PLiMMA) graft copolymer was synthesized and characterized. PLiMMA graft copolymer was synthesized from polymeric linoleic acid peroxide (PLina) possessing peroxide groups in the main chain by free radical polymerization of methyl methacrylate. Later, PLiMMA was characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Furthermore, Au/PLiMMA/n-Si diode was fabricated for the purpose of investigating PLiMMA׳s conformity in diodes. The main electrical characteristics of this diode were investigated using experimental current–voltage (IV) measurements in dark and at room temperature. Obtained results, such as sufficiently high rectifying ratio of 4.5×104, indicate that PLiMMA is a promising organic material for electronic device applications.  相似文献   
6.
Greenish yellow organic light-emitting diodes (GYOLEDs) have steadily attracted researcher's attention since they are important to our life. However, their performance significantly lags behind compared with the three primary colors based OLEDs. Herein, for the first time, an ideal host-guest system has been demonstrated to accomplish high-performance phosphorescent GYOLEDs, where the guest concentration is as low as 2%. The GYOLED exhibits a forward-viewing power efficiency of 57.0 lm/W at 1000 cd/m2, which is the highest among GYOLEDs. Besides, extremely low efficiency roll-off and voltages are achieved. The origin of the high performance is unveiled and it is found that the combined mechanisms of host-guest energy transfer and direct exciton formation on the guest are effective to furnish the greenish yellow emission. Then, by dint of this ideal host-guest system, a simplified but high-performance hybrid white OLED (WOLED) has been developed. The WOLED can exhibit an ultrahigh color rendering index (CRI) of 92, a maximum total efficiency of 27.5 lm/W and a low turn-on voltage of 2.5 V (1 cd/m2), unlocking a novel avenue to simultaneously achieve simplified structure, ultrahigh CRI (>90), high efficiency and low voltage.  相似文献   
7.
Over the last decade, narrow-band emitters have been recognized as key enablers for light emitting diodes (LEDs) backlights in liquid-crystal displays (LCDs) by competing with other display technologies. Today, efforts have been devoted to the exploration of narrow-band green/red luminescent materials with high quantum efficiency and excellent stability to optimize the performance of LED backlights. This review first presents an overview of the significant progress made in the development of narrow-band emitters used in LED backlights for LCDs with the emphasis on the versatile materials databases from doped phosphors to luminescent II–VI, III-V semiconductor quantum dots, and the recent halide perovskites nanocrystals and bulk metal halides. Subsequently, the correlation of structure-luminescence properties, and the device performance optimization of these emitters have been analyzed. The focus is placed on summarizing and comparing the remarkable examples of outdated and new narrow-band luminescent materials as potential candidates in LED backlights. Finally, the outlooks and challenges in discovering new narrow-band emitters have been proposed.  相似文献   
8.
In the present research, nanostructured Pd–Cd alloy electrocatalysts with different compositions were produced using the electrodeposition process. The morphology of the samples was studied by scanning electron microscopy analysis. Also, the elemental composition of the samples was determined by energy-dispersive X-ray spectroscopy and elemental mapping tests. Tafel polarization and electrochemical impedance spectroscopy methods were employed to determine the electrochemical corrosion properties of the synthesized samples in a solution containing 0.5 M sulfuric acid and 0.1 M formic acid. The linear sweep voltammetry, cyclic voltammetry, and chronoamperometry techniques were also employed to evaluate the electrocatalytic activity of prepared samples toward the oxidation of formic acid. In this respect, the influence of some factors such as formic acid and sulfuric acid concentrations and also potential scan rate was investigated. Compared to the pure Pd sample, the Pd–Cd samples were more reactive for the oxidation of formic acid. Besides, the sample with a lower amount of Pd (Pd1·3Cd) demonstrated much higher electrocatalytic activity than the Pd7·1Cd and Pd2·1Cd samples. The observed high mass activity of 15.06 A mg?1Pd for the Pd1·3Cd sample which is 21.1 times higher than Pd/C is an interesting result of this study.  相似文献   
9.
In this study, the decomposition of methanol into the CO and H species on the Pd/tungsten carbide (WC)(0001) surface is systematically investigated using periodic density functional theory (DFT) calculations. The possible reaction pathways and intermediates are determined. The results reveal that saturated molecules, i.e., methanol and formaldehyde, adsorb weakly on the Pd/ WC(0001) surface. Both CO and H prefer three-fold sites, with adsorption energies of −1.51 and −2.67 eV, respectively. On the other hand, CH3O stably binds at three-fold and bridge sites, with an adsorption energy of −2.58 eV. However, most of the other intermediates tend to adsorb to the surface with the carbon and oxygen atoms in their sp3 and hydroxyl-like configurations, respectively. Hence, the C atom of CH2OH preferentially attaches to the top sites, CHOH and CH2O adsorb at the bridge sites, while COH and CHO occupy the three-fold sites. The DFT calculations indicate that the rupture of the initial C–H bond promotes the decomposition of CH3OH and CH2OH, whereas in the case of CHOH, O–H bond scission is favored over the C–H bond rupture. Thus, the most probable methanol decomposition pathway on the Pd/WC(0001) surface is CH3OH → CH2OH → trans-CHOH → CHO → CO. The present study demonstrates that the synergistic effect of WC (as carrier) and Pd (as catalyst) alters the CH3OH decomposition pathway and reduces the noble metal utilization.  相似文献   
10.
The strong tendency of organic nanoparticles to rapidly self‐assemble into highly aligned superlattices at room temperature when solution‐cast from dispersions or spray‐coated directly onto various substrates is described. The nanoparticle dispersions are stable for years. The novel precipitation process used is believed to result in molecular distances and alignments in the nanoparticles that are not normally possible. Functional organic light‐emitting diodes (OLEDs)—which have the same host–dopant emissive‐material composition—with process‐tunable electroluminescence have been built with these nanoparticles, indicating the presence of novel nanostructures. For example, only changing the conditions of the precipitation process changes the OLED emission from green light to yellow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号