首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   0篇
化学工业   5篇
金属工艺   1篇
能源动力   2篇
无线电   46篇
一般工业技术   32篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   3篇
  2008年   3篇
  2007年   12篇
  2006年   17篇
  2005年   8篇
  2004年   15篇
  2003年   9篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
1.
2.
This account highlights recent progress towards understanding the complex hierarchical levels of solid‐state structure in a prototypical helical hairy‐rod polyfluorene, poly[9,9‐bis(2‐ethylhexyl)fluorene‐2,7‐diyl] (or PF2/6). This branched‐side‐chain containing polyfluorene undergoes a systematic intermolecular self‐assembly and liquid‐crystalline phase behavior in combination with uniaxial and biaxial alignment. The latter processes yield full three‐dimensional orientation of the crystallites and polymer chains. Also reviewed are the impact of the molecular structure and phase behavior on surface morphology, anisotropic film formation, and, ultimately, the overall impact of these physical attributes on optical constants. This particular polyfluorene also represents a model system for demonstrating the applicability of mean‐field theory in detailing the self‐organization of aligned hairy‐rod block‐copolymer systems. These results of PF2/6 are compared to those of other archetypical π‐conjugated hairy‐rod polymers. General guidelines of how molecular weight influences nanostructure, phase behavior, alignment, and surface morphology are given.  相似文献   
3.
By using Ni0‐mediated polymerization, we have systematically synthesized a series of fluorene‐based copolymers composed of blue‐, green‐, and red‐light‐emitting comonomers with a view to producing polymers with white‐light emission. 2,7‐Dibromo‐9,9‐dihexylfluorene, {4‐(2‐[2,5‐dibromo‐4‐{2‐(4‐diphenylamino‐phenyl)‐vinyl}‐phenyl]‐vinyl)‐phenyl}‐diphenylamine (DTPA), and 2‐{2‐(2‐[4‐{bis(4‐bromo‐phenyl)amino}‐phenyl]‐vinyl)‐6‐tert‐butyl‐pyran‐4‐ylidene}‐malononitrile (TPDCM) were used as the blue‐, green‐, and red‐light‐emitting comonomers, respectively. It was found that the emission spectra of the resulting copolymers could easily be tuned by varying their DTPA and TPDCM content. Thus with the appropriate red/green/blue (RGB) unit ratio, we were able to obtain white‐light emission from these copolymers. A white‐light‐emitting diode using the polyfluorene copolymer containing 3 % green‐emitting DTPA and 2 % red‐emitting TPDCM (PG3R2) with a structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonic acid)/PG3R2/Ca/Al was found to exhibit a maximum brightness of 820 cd m–2 at 11 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.35), which are close to the standard CIE coordinates for white‐light emission (0.33,0.33).  相似文献   
4.
5.
The inside cover shows light emission from within the channel of an ambipolar field‐effect transistor based on the green‐light‐emitting conjugated polymer F8BT in a bottom contact/top gate structure, as reported by Sirringhaus and co‐workers on p. 2708. It visually demonstrates the formation of separate electron and hole accumulation layers in ambipolar transistors and radiative recombination of charge carriers where the two layers meet (schematic), which is controlled by the applied voltages.  相似文献   
6.
7.
The synthesis, structural characterization, photo and electroluminescence, thermal and electrochemical properties of a new fluorinated fluorene-containing copolymer are described. The copolymer is formed by alternating mers of [2,3,5,6 tetrafluoro-1,4 phenylene] and [9,9′-dihexyl-2,7 fluorene] and emits blue light with low turn on voltages. The EL performance of the fluorinated copolymer was superior to those of the non-fluorinated analog copolymer and of the corresponding poly(9,9′dihexyl-2,7 polyfluorene) homopolymer.  相似文献   
8.
Light‐emitting diodes exhibiting efficient pure‐white‐light electroluminescence have been successfully developed by using a single polymer: polyfluorene derivatives with 1,8‐naphthalimide chromophores chemically doped onto the polyfluorene backbones. By adjusting the emission wavelength of the 1,8‐naphthalimide components and optimizing the relative content of 1,8‐naphthalimide derivatives in the resulting polymers, white‐light electroluminescence from a single polymer, as opposed to a polymer blend, has been obtained in a device with a configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(100 nm). The device exhibits Commission Internationale de l'Eclairage coordinates of (0.32,0.36), a maximum brightness of 11 900 cd m–2, a current efficiency of 3.8 cd A–1, a power efficiency of 2.0 lm W–1, an external quantum efficiency of 1.50 %, and quite stable color coordinates at different driving voltages, even at high luminances of over 5000 cd m–2.  相似文献   
9.
The causes of the spectral instability of poly[9,9‐dioctylfluoren‐2,7‐diyl‐co‐2′,7′‐spiro(cyclohexane‐1,9′‐fluorene)] during thermal annealing in air, which leads to a green photoluminescence (PL) emission band, are investigated. The Igreen/Iblue ratio evolution (I = intensity) is found to be independent of the amount of monoalkylfluorene defects, despite the fact that their presence might be regarded as a trigger for the radical process leading to polymer degradation in the presence of a trace amount of metal catalyst. Furthermore, the absence of a correlation between the degree of oxidation of the material and the Igreen/Iblue ratio indicates that the spatial disposition of fluorenones formed during the thermal degradation of the material, rather than their amount, is to be strictly related to the Igreen/Iblue ratio. The evidenced formation of fluorenone agglomerates, which could be considered the cause for the consistent increase in the Igreen/Iblue ratio during a thermal oxidation of a polyfluorene, confirms that the radical mechanism can also involve dialkylfluorene systems. Finally, the higher resistance to thermal degradation shown by spirocyclohexane fluorene units with respect to dioctylfluorene ones allows the synthesis of new, spectrally stable, fluorene‐based copolymers.  相似文献   
10.
Blue‐light‐emitting diodes made of polyfluorenes have low stability and, under operation, rapidly degrade and produce undesirable low‐energy emission bands (green or g‐bands). A spectroelectrochemical study of the degradation process suffered by polyfluorenes is reported here. These polymers lose their electronic properties by electrochemical oxidation and reduction through σ‐bond breaking. In addition, upon electrochemical reduction, the development of a structured green emission band at 485 nm is observed. The position and shape of this band is different from the usual featureless band at 535 nm assigned to fluorenone defects. The green‐light‐emitting product is isolated and analyzed by Fourier‐transform IR spectroscopy; fluorenone formation is excluded. The isolated product is crosslinked; its green emission is probably related to the formation of an intramolecular excimer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号