首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   1篇
  国内免费   8篇
电工技术   2篇
综合类   3篇
化学工业   3篇
金属工艺   1篇
机械仪表   4篇
能源动力   2篇
无线电   58篇
一般工业技术   43篇
自动化技术   7篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2014年   4篇
  2013年   1篇
  2012年   6篇
  2011年   15篇
  2010年   6篇
  2009年   11篇
  2008年   6篇
  2007年   10篇
  2006年   8篇
  2005年   9篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   7篇
  1999年   2篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
1.
A computational model is a computer program, which attempts to simulate an abstract model of a particular system. Computational models use enormous calculations and often require supercomputer speed. As personal computers are becoming more and more powerful, more laboratory experiments can be converted into computer models that can be interactively examined by scientists and students without the risk and cost of the actual experiments. The future of programming is concurrent programming. The threaded programming model provides application programmers with a useful abstraction of concurrent execution of multiple tasks. The objective of this release is to address the design of architecture for scientific application, which may execute as multiple threads execution, as well as implementations of the related shared data structures.

New version program summary

Program title: GrowthCPCatalogue identifier: ADVL_v4_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVL_v4_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 32 269No. of bytes in distributed program, including test data, etc.: 8 234 229Distribution format: tar.gzProgramming language: Free Object PascalComputer: multi-core x64-based PCOperating system: Windows XP, Vista, 7Has the code been vectorised or parallelized?: NoRAM: More than 1 GB. The program requires a 32-bit or 64-bit processor to run the generated code. Memory is addressed using 32-bit (on 32-bit processors) or 64-bit (on 64-bit processors with 64-bit addressing) pointers. The amount of addressed memory is limited only by the available amount of virtual memory.Supplementary material: The figures mentioned in the “Summary of revisions” section can be obtained here.Classification: 4.3, 7.2, 6.2, 8, 14External routines: Lazarus [1]Catalogue identifier of previous version: ADVL_v3_0Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 709Does the new version supersede the previous version?: YesNature of problem: Reflection high-energy electron diffraction (RHEED) is an important in-situ analysis technique, which is capable of giving quantitative information about the growth process of thin layers and its control. It can be used to calibrate growth rate, analyze surface morphology, calibrate surface temperature, monitor the arrangement of the surface atoms, and provide information about growth kinetics. Such control allows the development of structures where the electrons can be confined in space, giving quantum wells or even quantum dots. In order to determine the atomic positions of atoms in the first few layers, the RHEED intensity must be measured as a function of the scattering angles and then compared with dynamic calculations. The objective of this release is to address the design of architecture for application that simulates the rocking curves RHEED intensities during hetero-epitaxial growth process of thin films.Solution method: The GrowthCP is a complex numerical model that uses multiple threads for simulation of epitaxial growth of thin layers. This model consists of two transactional parts. The first part is a mathematical model being based on the Runge–Kutta method with adaptive step-size control. The second part represents first-principles of the one-dimensional RHEED computational model. This model is based on solving a one-dimensional Schrödinger equation. Several problems can arise when applications contain a mixture of data access code, numerical code, and presentation code. Such applications are difficult to maintain, because interdependencies between all the components cause strong ripple effects whenever a change is made anywhere. Adding new data views often requires reimplementing a numerical code, which then requires maintenance in multiple places. In order to solve problems of this type, the computational and threading layers of the project have been implemented in the form of one design pattern as a part of Model-View-Controller architecture.Reasons for new version: Responding to the users? feedback the Growth09 project has been upgraded to a standard that allows the carrying out of sample computations of the RHEED intensities for a disordered surface for a wide range of single- and epitaxial hetero-structures. The design pattern on which the project is based has also been improved. It is shown that this model can be effectively used for multithreaded growth simulations of thin epitaxial layers and corresponding RHEED intensities for a wide range of single- and hetero-structures. Responding to the users? feedback the present release has been implemented using a well-documented free compiler [1] not requiring the special configuration and installation additional libraries.Summary of revisions:
  • 1. 
    The logical structure of the Growth09 program has been modified according to the scheme showed in Fig. 1.1 The class diagram in Fig. 11 is a static view of the main platform-specific elements of the GrowthCP architecture. Fig. 21 provides a dynamic view by showing the creation and destruction simplistic sequence diagram for the process.
  • 2. 
    The program requires the user to provide the appropriate parameters in the form of a knowledge base for the crystal structures under investigation. These parameters are loaded from the parameters.ini files at run-time. Instructions to prepare the .ini files can be found in the new distribution.
  • 3. 
    The program enables carrying out different growth models and one-dimensional dynamical RHEED calculations for the fcc lattice with basis of three-atoms, fcc lattice with basis of two-atoms, fcc lattice with single atom basis, Zinc-Blende, Sodium Chloride, and Wurtzite crystalline structures and hetero-structures, but yet the Fourier component of the scattering potential in the TRHEEDCalculations.crystPotUgXXX() procedure can be modified and implemented according to users? specific application requirements. The Fourier component of the scattering potential of the whole crystalline hetero-structures can be determined as a sum of contributions coming from all thin slices of individual atomic layers. To carry out one-dimensional calculations of the scattering potentials, the program uses properly constructed self-consistent procedures.
  • 4. 
    Each component of the system shown in Figs. 11 and 21 is fully extendable and can easily be adapted to new changeable requirements. Two essential logical elements of the system, i.e. TGrowthTransaction and TRHEEDCalculations classes, were designed and implemented in this way for them to pass the information to themselves without the need to use the data-exchange files given. In consequence each of them can be independently modified and/or extended. Implementing other types of differential equations and the different algorithm for solving them in the TGrowthTransaction class does not require another implementation of the TRHEEDCalculations class. Similarly, implementing other forms of scattering potential and different algorithm for RHEED calculation stays without the influence on the TGrowthTransaction class construction.
Unusual features: The program is distributed in the form of main project GrowthCP.lpr, with associated files, and should be compiled using Lazarus IDE. The program should be compiled with English/USA regional and language options.Running time: The typical running time is machine and user-parameters dependent.References:
  • [1] 
    http://sourceforge.net/projects/lazarus/files/.
  相似文献   
2.
一种新型Si电子束蒸发器的研制及其应用研究   总被引:1,自引:0,他引:1  
我们成功地设计出一种新型的Si电子束蒸发器,并将它应用于Ge/Si(111)量子点的生长.由于采用悬臂式设计,它完全克服了高压短路的问题.电子束蒸发器的性能试验表明,稳定输出功率可以控制输出稳定的Si束流.应用这种电子束蒸发器可以在700 ℃,成功沉积出平整的单晶Si薄膜.进一步的试验表明,在这种缓冲层表面可以自组装生长出Ge量子点.  相似文献   
3.
采用脉冲激光分子束外延(PLMBE)方法,通过优化的工艺参数,在SrTiO3(100)单晶基片上外延结构为(8/8)的BaTiO3/SrTiO3超晶格薄膜.综合利用反射式高能电子衍射系统(RHEED)、高分辨率X射线衍射(HRXRD)以及高分辨率透射电镜选区电子衍射(SAED)技术,研究超晶格薄膜的晶格应变现象和规律.研究结果表明,在制备的BaTiO3/SrTiO3超晶格薄膜中,BaTiO3晶胞面外晶格增大,面内晶格减小;而SrTiO3晶胞面内及面外方向晶格都被拉伸,但面外晶格拉伸程度较大,SrTiO3晶胞产生了与BaTiO3晶胞方向一致的四方相转变.  相似文献   
4.
A practical computing algorithm has been developed for calculating the reflection high-energy electron diffraction (RHEED) from the molecular beam epitaxy growing surface. The calculations are based on the use of the dynamical diffraction theory in which the electrons are taken to be diffracted by a potential, which is periodic in the dimension perpendicular to the surface. The computer program presented in this paper enables calculations for three basic types of diffuse potential for crystalline heteroepitaxial structures, including the possible existence of various diffuse scattering models through the layer parallel to the surface.  相似文献   
5.
从原子级平坦的GaAs(001)-β2(2×4)重构表面出发,结合Reflection High Energy Electron Diffraction(RHEED)衍射图像演变和不同尺度的Scanning tunneling microscope(STM)实空间扫描图像,获取GaAs(001)薄膜表面形貌相变和表面重构的重要信息,深入地研究GaAs(001)表面形貌相变和表面重构的相互促进关系。研究发现表面重构的变化是促使表面形貌发生相变的主要动力,单一表面重构组成的GaAs(001)表面形貌更容易处于有序平坦相,GaAs(001)表面预粗糙相则是由两种同类型或者重构原胞差异很小的表面重构交织混合形成,当表面由两种完全不同类型的表面重构交错混合形成时GaAs(001)表面形貌将进入粗糙状态。研究结果表明GaAs(001)表面重构是表面形貌发生相变过程的微观内在原因,而GaAs(001)表面形貌相变是表面重构发生变化的宏观外在体现。  相似文献   
6.
本文利用反射式高能电子衍射(RHEED)、高分辨透射电镜和选区电子衍射方法,系统研究了Si(111)衬底上制备高质量氧化锌单晶薄膜的界面控制工艺.发现低温下Mg(0001)/Si(111)界面互扩散得到有效抑制,形成了高质量的单晶镁膜,进一步通过低温氧化法和分子束外延法实现了单晶MgO缓冲层的制备,从而为ZnO的外延生长提供了模板.在这一低温界面控制工艺中,Mg膜有效防止了Si表面的氧化,而MgO膜不仅为ZnO的成核与生长提供了优良的缓冲层,且极大地弛豫了由于衬底与ZnO之间的晶格失配所引起的应变.上述低温工艺也可用来控制其它活性金属膜与硅的界面,从而在硅衬底上获得高质量的氧化物模板.  相似文献   
7.
Pure and Co-doped PbMoO4 crystals, were studied using reflection high energy electron diffraction (RHEED), optical and dielectric methods. The calculated lattice constants for PbMoO4:Co (0.2 mol%) were determined as being equal to: a = 5.54 ± 0.05 Å and c = 11.96 ± 0.05 Å. The absorption spectra of “as grown” and annealed pure and Co-doped PbMoO4 crystals were examined. The results of dielectric measurements gave the conductivity activation energy of highly Co-doped PbMoO4 crystals (0.5 and 1.0 mol%) equal to 0.40 and 0.46 eV, respectively.  相似文献   
8.
用激光分子束外延(LMBE)设备,在SrTiO3(001)基片上外延生长BaTiO3/CoFe2O4/BaTiO3多层复合磁电薄膜结构。通过反射式高能电子衍射(RHEED)对薄膜生长过程进行原位监测,结果显示,随着CoFe2O4厚度的增加薄膜内应力逐渐被释放,并且应力释放的过程导致了薄膜生长模式的变化。高分辨X射线衍射(XRD)发现,随着CoFe2O4厚度的增加,CoFe2O4对BaTiO3薄膜的张应力逐渐增大,BaTiO3晶胞的c轴晶格常数逐渐变小。理论计算给出了BaTiO3面外晶格常数c随CoFe2O4沉积时间的变化规律。原子力显微镜(AFM)对表面形貌进行表征,进一步证明了复合薄膜生长模式的变化。  相似文献   
9.
We have investigated the preparation of β-FeSi2 substrate and growth condition of β-FeSi2 thin film on β-FeSi2 (110) substrate by molecular beam epitaxy. The surface of the substrate was prepared by a wet-etching using HF(50%):HNO3(60%):H2O = 1:1:5 solution at 25 °C. It is clear that the optimal etching period to obtain a flat surface was 3 min. The β-FeSi2 thin film with streak RHEED pattern was obtained at Si/Fe flux ratio of 2.9. Average surface roughness (Ra) of the β-FeSi2 film was about 0.5 nm in 5 × 5 μm2 area.  相似文献   
10.
The growth of high quality multicomponent oxide thin films by reactive molecular beam epitaxy (MBE) requires precise composition control. We report the use of in situ reflection high-energy electron diffraction (RHEED) for the stoichiometric deposition of SrTiO3 (1 0 0) from independent strontium and titanium sources. By monitoring changes in the RHEED intensity oscillations as monolayer doses of strontium and titanium are sequentially deposited, the Sr:Ti ratio can be adjusted to within 1% of stoichiometry. Furthermore, the presence of a beat frequency in the intensity oscillation envelope allows the adjustment of the strontium and titanium fluxes so that a full monolayer of coverage is obtained with each shuttered dose of strontium or titanium. RHEED oscillations have also been employed to determine the doping concentration in barium- and lanthanum-doped SrTiO3 films.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号