首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   10篇
  国内免费   6篇
综合类   7篇
化学工业   4篇
金属工艺   50篇
机械仪表   5篇
矿业工程   3篇
无线电   100篇
一般工业技术   26篇
冶金工业   7篇
自动化技术   8篇
  2023年   1篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   8篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   15篇
  2010年   4篇
  2009年   15篇
  2008年   14篇
  2007年   13篇
  2006年   20篇
  2005年   19篇
  2004年   13篇
  2003年   13篇
  2002年   7篇
  2001年   12篇
  2000年   6篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有210条查询结果,搜索用时 0 毫秒
1.
The interfacial intermetallics between Cu and solder were studied for four Sn-Pb compositions at the annealing temperatures of 125°C, 150°C, and 175°C for up to 30 days. The η-phase (Cu6Sn5) layer formed during reflow continues to grow during annealing. An additional layer of ɛ-phase (Cu3Sn) forms at the η/Cu interface after an incubation annealing time. The thickness results fit a power-law relationship against time with average exponents 0.69 and 0.44 for the η phase and the ɛ phase, respectively. On prolonged annealing, the proportions of the individual phases in the total layer reach a steady state.  相似文献   
2.
元素铅既对人体存在神经毒性也对环境产生重金属污染,因此,无铅焊料的研究倍受封装业的重视。文章采用温度循环下有限元数值模拟方法,针对4种焊料5种配比包括SnPb(60/40,10/90)、SnPbAg(5/92.5/2.5)、SnAg(96.5/3.5)和SnAgCu(95.5/3.8/0.7),定量评估QFP焊点的塑性应变。给出焊料各参数对于焊点塑性应变的影响程度,第一主元分析显式为△Ps≈-2.56△(Q/R),相应的Y向塑性应变均值降低为优化前的11%。所得的结果可为QFP封装时的焊料选择提供新的设计参考。  相似文献   
3.
无铅波峰焊设备的特点   总被引:1,自引:0,他引:1  
相对于传统的Sn-Pb焊料,无铅焊料需要较高的焊接温度,而且润湿性差,另外免清洗助焊剂和水溶性助焊剂的固体含量低,活性温度高和活性区间窄。无铅焊料和助焊剂的特性决定了无铅波峰焊设备在结构和材料选用上有很大不同。通过对无铅波峰焊设备的各个部分的特点进行分析,为传统的旧波峰焊设备的改造提供参考。  相似文献   
4.
Knowledge of phase equilibria of the Sn-Ag-Cu-Ni quaternary system at the Sn-rich corner is important for the understanding of the interfacial reactions at the Sn-Ag-Cu/Ni contacts, which are frequently encountered in recent microelectronic products. Various Sn-Ag-Cu-Ni alloys were prepared and equilibrated at 250°C. The alloys were then quenched and analyzed. The phases were determined by metallography, compositional analysis, and x-ray diffraction (XRD) analysis. No quaternary phases were found. The isoplethal sections at 60at.%Sn, 70at.%Sn, 80at.%Sn, and 90at.%Sn at 250°C are determined. The phase equilibrium relationship was proposed based on the quaternary experimental results and the 250°C isothermal sections of the four constituent ternary systems, Sn-Ag-Cu, Sn-Ag-Ni, Sn-Cu-Ni, and Cu-Ag-Ni. Because there are no ternary phases in all these three systems, all the compounds are in fact binary compounds with various solubilities of the other two elements.  相似文献   
5.
Phase equilibria of Sn-In based micro-soldering alloys   总被引:1,自引:0,他引:1  
The phase equilibria of Sn-In-X (X=Ag, Bi, Sb, Zn), the most basic information necessary for the development of Pb-free micro-soldering alloys, were studied using the CALPHAD method. Thermodynamic analyses for describing the Gibbs energies of the constituent phases were made by optimizing the obtained data on the experimental phase diagrams, and such data in the literature, including data on thermochemical properties. The present results combined with the thermodynamic database which was recently developed by our group [I. Ohnuma et al., J. Electron. Mater. 28, 1164 (1999)] provide various information on phase equilibria such as liquidus and solidus surfaces, isothermal and vertical section diagrams, mole fractions of the phase constitutions, etc., and thermodynamic properties such as activity, heat of mixing, surface energy, viscosity, etc., in multi-component soldering alloy systems including the elements of Pb, Bi, Sn, Sb, Cu, Ag, Zn, and In. Typical examples for the phase diagrams and thermodynamic properties of Sn-In-X ternary systems are shown. The application of the database to the alloy design for Pb-free solders is also presented.  相似文献   
6.
Development of nano-composite lead-free electronic solders   总被引:1,自引:0,他引:1  
Inert, hybrid inorganic/organic, nano-structured chemicals can be incorporated into low melting metallic materials, such as lead-free electronic solders, to achieve desired levels of service performance. The nano-structured materials technology of polyhedral oligomeric silsesquioxanes (POSS), with appropriate organic groups, can produce suitable means to promote bonding between nano-reinforcements and the metallic matrix. The microstructures of lead-free solder reinforced with surface-active POSS tri-silanols were evaluated using scanning electron microscopy (SEM). Wettability of POSS-containing lead-free solders to copper substrate was also examined. Steady-state deformation of solder joints made of eutectic Sn-Ag solder containing varying weight fractions of POSS of different chemical moieties were evaluated at different temperatures (25°C, 100°C, and 150°C) using a rheometric solids analyzer (RSA-III). Mechanical properties such as shear stress versus simple shear-strain relationships, peak shear stress as a function of rate of simple shear strain, and testing temperature for such nano-composite solders are reported. The service reliability of joints made with these newly formulated nano-composite solders was evaluated using a realistic thermomechanical fatigue (TMF) test profile. Evolution of microstructures and residual mechanical property after different extents of TMF cycles were evaluated and compared with joints made of standard, unreinforced eutectic Sn-Ag solder.  相似文献   
7.
Solder joints used in electronic applications undergo reflow operations. Such operations can affect the solderability, interface intermetallic layer formation and the resultant solder joint microstructure. These in turn can affect the overall mechanical behavior of such joints. In this study the effects of reflow on solderability and mechanical properties were studied. Nanoindentation testing (NIT) was used to obtain mechanical properties from the non-reflow (as-melted) and multiple reflowed solder materials. These studies were carried out with eutectic Sn-3.5Ag solders, with or without mechanically added Cu or Ag reinforcements, using Cu substrates. Microstructural analysis was carried out on solder joints made with the same solders using copper substrate.  相似文献   
8.
This study investigates the influence of adding Sb on the microstructure and adhesive strength of the Sn3.5Ag solder. Both solidus and liquidus temperatures increase as Sb additions increase. Adding 1.5wt.%Sb leads to the narrowest range (6.6°C) between the solidus and liquidus temperature of the solder. Adding Sb decomposes the as-soldered ringlike microstructure of Sn3.5Ag and causes solid-solution hardening. The as-soldered hardness increases with increasing Sb addition. For long-term storage, adding Sb reduces the size of the rodlike Ag3Sn compounds. The hardness also increases with increasing Sb addition. Adding Sb depresses the growth rate of interfacial intermetallic compounds (IMCs) layers, but the difference between 1% and 2% Sb is not distinct. For mechanical concern, adding Sb improves both adhesive strength and thermal resistance of Sn3.5Ag, where 1.5% Sb has the best result. However, adding Sb causes a variation in adhesive strength during thermal storage. The more Sb is added, the higher the variation reveals, and the shorter the storage time requires. This strength variation helps the solder joints to resist thermal storage.  相似文献   
9.
在大功率半导体激光器列阵及叠阵的组装中,焊料的选择是极其关键的,因为焊料直接参与对激光器的导电、导热激光器所需的电流全部从焊料通过,而半导体激光器列阵或叠阵工作时电流是很大的,可达50A~100A。同时半导体激光器工作时产生的热量非常大,如焊料的导热性不好,由于电流的热效应,就会在焊料上产生巨大的热量,使焊料熔化。文中研制了一种新型的焊料,这种焊料在两层铟之间蒸镀几层金,焊料由钨/镍/金/铟/铜等多层金属构成。利用这种焊料研制出脉冲功率达100W的半导体激光器列阵。  相似文献   
10.
Reactive wetting of solders on Cu and Cu6Sn5/Cu3Sn/Cu substrates was investigated using both (1) the wetting balance, and (2) the hot-stage real time, in situ visualization of the triple-line movement. To understand the phenomenology of the spreading behavior better, comprehensive real-time in situ observations were performed. It was found that the wetting time during the wetting balance tests for both the lead solder (63SnPb) and lead-free solder systems (Sn0.7Cu and Sn3.5Ag) is shorter on Cu substrates than it is on Cu6Sn5/Cu3Sn/Cu substrates. The wetting force was not remarkably different on these two substrates for the same solder system. The hot-stage tests indicate a more pronounced spreading of 63Sn-Pb on Cu6Sn5/Cu3Sn/Cu substrates, along with a much larger spreading area. Spreading of lead-free solders in terms of the triple-line kinetics studied by using the hot-stage visualization shows no significant difference in the spreading evolution either over Cu or over Cu6Sn5/Cu3Sn/Cu substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号