首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   51篇
  国内免费   8篇
电工技术   1篇
综合类   3篇
金属工艺   1篇
机械仪表   13篇
无线电   91篇
一般工业技术   6篇
原子能技术   2篇
自动化技术   78篇
  2025年   1篇
  2024年   6篇
  2023年   12篇
  2022年   8篇
  2021年   15篇
  2020年   12篇
  2019年   4篇
  2018年   7篇
  2017年   7篇
  2016年   7篇
  2015年   11篇
  2014年   13篇
  2013年   7篇
  2012年   11篇
  2011年   13篇
  2010年   8篇
  2009年   9篇
  2008年   7篇
  2007年   15篇
  2006年   4篇
  2005年   6篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1998年   1篇
  1992年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
1.
    
The prime purpose for the image reconstruction of a multi-frame super-resolution is to reconstruct a higher-resolution image through incorporating the knowledge obtained from a series of relevant low-resolution images, which is useful in numerous fields. Nevertheless, super-resolution image reconstruction methods are usually damaged by undesirable restorative artifacts, which include blurring distortion, noises, and stair-casing effects. Consequently, it is always challenging to achieve balancing between image smoothness and preservation of the edges inside the image. In this research work, we seek to increase the effectiveness of multi-frame super-resolution image reconstruction by increasing the visual information and improving the automated machine perception, which improves human analysis and interpretation processes. Accordingly, we propose a new approach to the image reconstruction of multi-frame super-resolution, so that it is created through the use of the regularization framework. In the proposed approach, the bilateral edge preserving and bilateral total variation regularizations are employed to approximate a high-resolution image generated from a sequence of corresponding images with low-resolution to protect significant features of an image, including sharp image edges and texture details while preventing artifacts. The experimental results of the synthesized image demonstrate that the new proposed approach has improved efficacy both visually and numerically more than other approaches.  相似文献   
2.
非局部联合稀疏近似的超分辨率重建算法   总被引:1,自引:0,他引:1       下载免费PDF全文
该文结合联合稀疏近似和非局部自相似的概念,提出非局部联合稀疏近似的超分辨率重建方法。该方法将输入图像的跨尺度高、低分辨率图像块统一进行联合稀疏编码,建立它们之间的稀疏关联,并将这种关联作为先验知识来指导图像的超分辨率重建。该文方法保证跨尺度自相似集具有相同的稀疏性模式,能更有效地利用图像的自相似性先验信息,提高算法的自适应性。通过自然图像实验,与其它几种基于学习的超分辨率算法对比,超分辨率效果有较好改善。  相似文献   
3.
This paper presents the original and versatile architecture of a modular neural network and its application to super-resolution. Each module is a small multilayer perceptron, trained with the Levenberg-Marquardt method, and is used as a generic building block. By connecting the modules together to establish a composition of their individual mappings, we elaborate a lattice of modules that implements full connectivity between the pixels of the low-resolution input image and those of the higher-resolution output image. After the network is trained with patterns made up of low and high-resolution images of objects or scenes of the same kind, it will be able to enhance dramatically the resolution of a similar object’s representation. The modular nature of the architecture allows the training phase to be readily parallelized on a network of PCs. Finally, it is shown that the network performs global-scale reconstruction of human faces from very low resolution input images.  相似文献   
4.
彭羊平  宁贝佳  高新波 《计算机科学》2015,42(11):104-107, 143
单帧图像超分辨率重建是指利用一幅低分辨率图像,通过相应的算法来获取一幅高分辨率图像的技术。提出了一种基于 非负邻域嵌入和 非局部正则化 的单帧图像超分辨率重建算法,以弥补传统邻域嵌入算法的不足。在训练阶段,首先对低分辨率图像预放大2倍,以保证在放大倍数较大时,高、低分辨率图像块之间的邻域关系也能得到较好的保持;在重建阶段,使用非负邻域嵌入来有效地解决近邻数的选取问题;最后利用图像块的非局部相似性构造非局部正则项对重建结果进行修正。实验结果表明,相对于传统算法,本方法的重建结果纹理丰富、边缘清晰。  相似文献   
5.
    
The diagnosis of COVID-19 requires chest computed tomography (CT). High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease, so it is of clinical importance to study super-resolution (SR) algorithms applied to CT images to improve the resolution of CT images. However, most of the existing SR algorithms are studied based on natural images, which are not suitable for medical images; and most of these algorithms improve the reconstruction quality by increasing the network depth, which is not suitable for machines with limited resources. To alleviate these issues, we propose a residual feature attentional fusion network for lightweight chest CT image super-resolution (RFAFN). Specifically, we design a contextual feature extraction block (CFEB) that can extract CT image features more efficiently and accurately than ordinary residual blocks. In addition, we propose a feature-weighted cascading strategy (FWCS) based on attentional feature fusion blocks (AFFB) to utilize the high-frequency detail information extracted by CFEB as much as possible via selectively fusing adjacent level feature information. Finally, we suggest a global hierarchical feature fusion strategy (GHFFS), which can utilize the hierarchical features more effectively than dense concatenation by progressively aggregating the feature information at various levels. Numerous experiments show that our method performs better than most of the state-of-the-art (SOTA) methods on the COVID-19 chest CT dataset. In detail, the peak signal-to-noise ratio (PSNR) is 0.11 dB and 0.47 dB higher on CTtest1 and CTtest2 at SR compared to the suboptimal method, but the number of parameters and multi-adds are reduced by 22K and 0.43G, respectively. Our method can better recover chest CT image quality with fewer computational resources and effectively assist in COVID-19.  相似文献   
6.
Accurate maps of rural linear land cover features, such as paths and hedgerows, would be useful to ecologists, conservation managers and land planning agencies. Such information might be used in a variety of applications (e.g., ecological, conservation and land management applications). Based on the phenomenon of spatial dependence, sub-pixel mapping techniques can be used to increase the spatial resolution of land cover maps produced from satellite sensor imagery and map such features with increased accuracy. Aerial photography with a spatial resolution of 0.25 m was acquired of the Christchurch area of Dorset, UK. The imagery was hard classified using a simple Mahalanobis distance classifier and the classification degraded to simulate land cover proportion images with spatial resolutions of 2.5 and 5 m. A simple pixel-swapping algorithm was then applied to each of the proportion images. Sub-pixels within pixels were swapped iteratively until the spatial correlation between neighbouring sub-pixels for the entire image was maximised. Visual inspection of the super-resolved output showed that prediction of the position and dimensions of hedgerows was comparable with the original imagery. The maps displayed an accuracy of 87%. To enhance the prediction of linear features within the super-resolved output, an anisotropic modelling component was added. The direction of the largest sums of proportions was calculated within a moving window at the pixel level. The orthogonal sum of proportions was used in estimating the anisotropy ratio. The direction and anisotropy ratio were then used to modify the pixel-swapping algorithm so as to increase the likelihood of creating linear features in the output map. The new linear pixel-swapping method led to an increase in the accuracy of mapping fine linear features of approximately 5% compared with the conventional pixel-swapping method.  相似文献   
7.
二维子阵级超分辨测向在相控阵雷达中具有重要应用.本文研究适用于相干源的子阵级ML估计方法.提出了子阵级ML估计的信号模型.利用子阵相位中心与增益来构造简化的阵列流形,使相控阵的校正成本与代价得到较大的降低.引入加权网络对子阵输出进行后处理,大大提高了阵列处理的灵活性.构造了高斯模式的子阵方向图.与直接简化的阵列流形方法相比,基于高斯方向图的简化阵列流形方法克服了其测向范围无法调整的局限性,且能更好抑制旁瓣源.仿真结果证实了所提出方法的有效性.  相似文献   
8.
本文分析了红外玫瑰线扫描超分辨成像原理,提出小型化高速目标识别系统设计方案,给出了基于专用快速低功耗DSP芯片和可编程逻辑器件的系统实现.与文[3]实现的系统相比较研究表明,该系统具有体积小,图像分辨率高,目标检测概率大等优点.  相似文献   
9.
Experimental results are presented which demonstrate super-resolution in a coherent scanning microscope. The microscope has a special optical mask, a Fourier lens and detector pin-hole to carry out optical processing of the image. The form of the special mask was calculated using the theory of singular systems.  相似文献   
10.
传统序列超分辨率方法对低分辨率视频序列的要求较高,一旦序列中没有包含足够的信息,会造成重建高分辨率图像质量的下降。为此,提出一种结合稀疏编码模型的序列超分辨率算法。利用概率运动场从低分辨率序列中重建一幅高分辨率图像,根据自适应阈值确定重建有效和无效区域,使用稀疏编码模型对无效区域进行补全重建。实验结果表明,该算法可以采用序列自身的信息和稀疏字典中的信息来重建高分辨率图像,在序列信息有破缺时,与仅利用序列自身信息或仅利用单幅图像的算法相比,具有更好的鲁棒性和广泛的适用性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号