首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学工业   5篇
金属工艺   1篇
机械仪表   1篇
无线电   4篇
一般工业技术   5篇
  2023年   4篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1989年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Transition metal dichalcogenides layered nano-crystals are emerging as promising candidates for next-generation optoelectronic and quantum devices. In such systems, the interaction between excitonic states and atomic vibrations is crucial for many fundamental properties, such as carrier mobilities, quantum coherence loss, and heat dissipation. In particular, to fully exploit their valley-selective excitations, one has to understand the many-body exciton physics of zone-edge states. So far, theoretical and experimental studies have mainly focused on the exciton–phonon dynamics in high-energy direct excitons involving zone-center phonons. Here, ultrafast electron diffraction and ab initio calculations are used to investigate the many-body structural dynamics following nearly- resonant excitation of low-energy indirect excitons in MoS2. By exploiting the large momentum carried by scattered electrons, the excitation of in-plane K- and Q- phonon modes are identified with 𝑬 symmetry as key for the stabilization of indirect excitons generated via near-infrared light at 1.55 eV, and light is shed on the role of phonon anharmonicity and the ensuing structural evolution of the MoS2 crystal lattice. The results highlight the strong selectivity of phononic excitations directly associated with the specific indirect- exciton nature of the wavelength-dependent electronic transitions triggered in the system.  相似文献   
2.
Thermoelectric materials have attracted significant research interest in recent decades due to their promising application potential in interconverting heat and electricity. Unfortunately, the strong coupling between the material parameters that determine thermoelectric efficiency, i.e., the Seebeck coefficient, electrical conductivity, and thermal conductivity, complicates the optimization of thermoelectric energy converters. Main‐group chalcogenides provide a rich playground to alleviate the interdependence of these parameters. Interestingly, only a subgroup of octahedrally coordinated chalcogenides possesses good thermoelectric properties. This subgroup is also characterized by other outstanding characteristics suggestive of an exceptional bonding mechanism, which has been coined metavalent bonding. This conclusion is further supported by a map that separates different bonding mechanisms. In this map, all octahedrally coordinated chalcogenides with good performance as thermoelectrics are located in a well‐defined region, implying that the map can be utilized to identify novel thermoelectrics. To unravel the correlation between chemical bonding mechanism and good thermoelectric properties, the consequences of this unusual bonding mechanism on the band structure are analyzed. It is shown that features such as band degeneracy and band anisotropy are typical for this bonding mechanism, as is the low lattice thermal conductivity. This fundamental understanding, in turn, guides the rational materials design for improved thermoelectric performance by tailoring the chemical bonding mechanism.  相似文献   
3.
Bi2Se3, as a Te‐free alternative of room‐temperature state‐of‐the‐art thermoelectric (TE) Bi2Te3, has attracted little attention due to its poor electrical transport properties and high thermal conductivity. Interestingly, BiSbSe3, a product of alloying 50% Sb on Bi sites, shows outstanding electron and phonon transports. BiSbSe3 possesses orthorhombic structure and exhibits multiple conduction bands, which can be activated when the carrier density is increased as high as ≈3.7 × 1020 cm?3 through heavily Br doping, resulting in simultaneously enhancing the electrical conductivities and Seebeck coefficients. Meanwhile, an extremely low thermal conductivity (≈0.6–0.4 W m?1 K?1 at 300–800 K) is found in BiSbSe3. Both first‐principles calculations and elastic properties measurements show the strong anharmonicity and support the ultra‐low thermal conductivity of BiSbSe3. Finally, a maximum dimensionless figure of merit ZT ~ 1.4 at 800 K is achieved in BiSb(Se0.94Br0.06)3, which is comparable to the most n‐type Te‐free TE materials. The present results indicate that BiSbSe3 is a new and a robust candidate for TE power generation in medium‐temperature range.  相似文献   
4.
Combinations of the fourth-order elastic constants of -brass were calculated using the measured second-order and third-order elastic constants and the expressions for the effective elastic constants of a cubic crystal obtained from finite-strain theory. The present calculations show that the Cauchy relations for the fourth-order elastic constants in -brass are not satisfied. This implies that noncentral or many-body forces occur in this material. We consider two alloys. The higher-Zn alloy shows lower magnitudes of the fourth-order elastic constants and a larger Cauchy discrepancy.Visiting scientist on leave from the Department of Physics, Indian Institute of Technology, Madras-600036, India.  相似文献   
5.
Optimization of thermal expansion coefficient (CTE) mismatch among constituent rare-earth silicate layers is a critical challenge for the optimal multilayer thermal/environmental barrier coating (T/EBC) architecture for SiCf/SiCm CMCs. In this study, thermal expansion properties for β-, γ- and δ-RE2Si2O7 polymorphs are investigated via DFT calculations. The interaction between rare-earth (RE) atoms and neighboring bridging oxygen (OB) atoms, as well as the structure of [O3SiOBSiO3] pyrosilicate units are the characteristic “gene” that controls the positive or negative contribution from low-frequency vibration patterns to the overall phonon anharmonicity, and eventually determine the significantly different CTE of RE2Si2O7 polymorphs. Inspired by the concept of “genome modification”, γ-(Dy0.15Y0.85)2Si2O7 solid solution is designed and synthesized, which shows notable enhancements of CTE as compared with γ-Y2Si2O7. Such tunable CTE could presumably be explained by doping-induced localized lattice distortion around [O3SiOBSiO3] pyrosilicate units, leading to switchable magnitude of negative contribution from low-frequency phonons to thermal expansion.  相似文献   
6.
因零膨胀材料在工程上的潜在应用,近10多年来,对材料的热膨胀特性得以深入了解.本文对ZrW2O8的负热膨胀现象的研究进展进行了简要回顾,并特别指出理解非简谐振动的重要性.讨论了ZrV2O7的声了特性和非简谐振动,其负热膨胀的高温相和具有正的热膨胀的低温相特征. 此外,还比较了ZrV2O7和ZrW2O8的热膨胀特性.  相似文献   
7.
The interrelationship between the mechanical work done on a material in the elastic range and changes in its thermodynamic properties, that is, between stress and strain, on the one hand, and temperature and entropy, on the other, is known as the Thermoelastic effect. The phenomenon is exactly adiabatic and is characterized by the thermoelastic quotient commonly referred to as thermoelastic constant. The thermoelastic effect can be used for stress analysis by monitoring the stress fluctuations by means of infrared radiometry, Also, it can be applied to study the anharmonicity in materials by measuring the temperature changes associated with adiabatic pressure changes, In this paper thermodynamic expressions are derived for the pressure derivative of the thermoelastic quotient under adiabatic as well as isothermal conditions, The derived expressions are applied to investigate the thermoelastic effect for the three glasses, namely, silica glass, soda-lime silica glass, and lead-silica glass, The isothermal pressure derivative of the thermoelastic quotient is evaluated for the three glasses. The isothermal volume derivative of the Gruneisen function is calculated.  相似文献   
8.
Using molecular dynamics simulations and a modified analytic embedded atom method (MAEAM), the anharmonic effects of Be(0 0 0 1) surface have been studied in the temperature range from 0 K to 1400 K. The temperature dependence of the interlayer separation, mean square vibrational displacement, phonon frequencies and phonon line width, and layer structure factor are calculated. The obtained results for temperature dependence of interlayer separation and mean square displacement show that the anharmonic effects are small in the temperature range from 0 K to 1100 K. The calculated layer order parameters indicate that Be(0 0 0 1) surface loses its long-range translational order, but do not premelt up to 50 K below the bulk melting point. The surface disordering may result from strongly contracted c/a ratio of Be.  相似文献   
9.
采用基于密度泛函理论的有限位移法和玻尔兹曼方程,计算了CeO2的晶格动力学性质、热力学性质和热输运性质,计算结果和实验结果基本符合。通过分析CeO2所有声子模式的振动频率、Gruneisen系数和散射率,揭示了光学声子对增强晶格振动的非简谐性和声子散射率所起的重要作用。此外,还计算了不同自由程的声子模式对热导率的贡献,发现CeO2的晶格热导率主要由声子自由程在1~10 nm之间的声子所贡献。  相似文献   
10.
Rare earth monosilicates RE2SiO5 have been considered as promising environmental barrier coating materials for silicon-based ceramics due to their low thermal conductivity and good high-temperature stability. We herein performed a systematic study of the lattice dynamics for RE2SiO5 (RE?=?Dy, Ho, Er, Tm, Yb and Lu) using first-principles calculations. The loosely bound rare earth atoms provide large Grüneisen parameters and low phonon group velocities, both of which determine the low thermal conductivity. Theoretical exploration predicts an anomalous increase of lattice thermal conductivity with increment of RE atomic number and the mechanism is explained by the stronger atomic bonding and weaker phonon anharmonicity. Although incorporating heavier atoms has long been considered as an effective way to reduce lattice thermal conductivity, this work addresses the importance of bonding heterogeneity and anharmonicity rather than atomic mass variation. This theoretical study suggests an alternative approach towards the design of new thermal insulating materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号