首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   669篇
  免费   182篇
  国内免费   14篇
电工技术   6篇
综合类   10篇
化学工业   105篇
金属工艺   52篇
机械仪表   1篇
建筑科学   3篇
矿业工程   6篇
能源动力   42篇
石油天然气   6篇
武器工业   1篇
无线电   251篇
一般工业技术   353篇
冶金工业   25篇
原子能技术   3篇
自动化技术   1篇
  2024年   2篇
  2023年   142篇
  2022年   9篇
  2021年   72篇
  2020年   95篇
  2019年   72篇
  2018年   65篇
  2017年   59篇
  2016年   42篇
  2015年   28篇
  2014年   29篇
  2013年   21篇
  2012年   23篇
  2011年   29篇
  2010年   15篇
  2009年   20篇
  2008年   17篇
  2007年   20篇
  2006年   10篇
  2005年   9篇
  2004年   17篇
  2003年   9篇
  2002年   13篇
  2001年   9篇
  2000年   9篇
  1999年   11篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1986年   1篇
排序方式: 共有865条查询结果,搜索用时 15 毫秒
1.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
2.
3.
A kind of complex additive mainly containing Al, Mg, F, and O was prepared. The synthetical performances of the property-modified prebaked anodes containing additives were tested in laboratory. On the basis of ideal testing results obtained, a large number of industrial prebaked property-modified anodes are prepared in a large-scale aluminum company. Further more, they are all used in 160 kA prebaked anode aluminum electrolysis cells. The statistic result show that, compared with common anodes, the property-modified ones enhance current by 11.6 kg per ton aluminum averagely.  相似文献   
4.
Electrodes of RhxTi(1−x)Oy nominal composition were prepared by thermal decomposition of the chloride or nitrate precursor salts dissolved in strongly acidic medium and applied by brush to both sides of a Ti° support. A systematic study of the influence of calcination temperature and time as well as oxygen flux was conducted. The coatings were characterised by SEM, EDAX, XRD, open circuit potential measurements and cyclic voltammetry (CV). Visible-ultraviolet spectrophotometry was employed to identify the chemical form of the precursor in solution while thermogravimetric analysis (TGA) was used to assess the decomposition temperature ranges. Optimisation of the coating preparation parameters showed coatings obtained from [Rh(H2O)6](NO3)3 precursor dissolved in HNO3 1:2 (v/v) and fired at 430 °C for 2 h in a 5 l min−1 oxygen stream-furnished stable electrodes having the highest electrochemically active surface area.  相似文献   
5.
Electroactive oxide coatings on titanium, known in industrial chlorine production as dimensionally stable anodes (DSA), are of limited service life owing to the dissolution of active oxide, but also due to low corrosion stability of titanium, at high anodic potentials and elevated temperatures. In order to improve the anode stability, ternary carbide, Ti3SiC2, could be a promising material for the coating support, since chemical corrosion stability of Ti3SiC2 is significantly higher if compared to Ti. In this work, the possibility of the sol-gel preparation of RuO2-TiO2 coating on Ti3SiC2 is investigated and comparison of the basic characteristics of sol-gel processed oxide coating, Ru0.5Ti0.5O2, applied onto Ti3SiC2 and Ti, is reported. Microscopic investigation of the coating surface showed that considerably less cracked coating is formed onto the Ti3SiC2 support. Slightly higher voltammetric currents are registered for Ti3SiC2-supported coating in H2SO4 and NaCl solution. The activity for chlorine evolution is higher, while the currents of oxygen evolution reaction are lower for Ru0.5Ti0.5O2/Ti3SiC2 anode in comparison to Ru0.5Ti0.5O2/Ti anode. Even though these preliminary results on the basic electrochemical properties of Ru0.5Ti0.5O2/Ti3SiC2 anode and chemical stability of Ti3SiC2 are promising, the accelerated stability test in NaCl solution showed that coated Ti3SiC2 is not anodically stable and lasts considerably shorter than Ru0.5Ti0.5O2/Ti anode prepared and tested under the same conditions.  相似文献   
6.
Regarding the complex properties of various cations, the design of aqueous batteries that can simultaneously store multi-ions with high capacity and satisfactory rate performance is a great challenge. Here an amorphization strategy to boost cation-ion storage capacities of anode materials is reported. In monovalent (H+, Li+, K+), divalent (Mg2+, Ca2+, Zn2+) and even trivalent (Al3+) aqueous electrolytes, the capacity of the resulting amorphous MoOx is more than quadruple than that of crystalline MoOx and exceeds those of other reported multiple-ion storage materials. Both experimental and theoretical calculations reveal the generation of ample active sites and isotropic ions in the amorphous phase, which accelerates cation migration within the electrode bulk. Amorphous MoOx can be coupled with multi-ion storage cathodes to realize electrochemical energy storage devices with different carriers, promising high energy and power densities. The power density exceeded 15000 W kg−1, demonstrating the great potential of amorphous MoOx in advanced aqueous batteries.  相似文献   
7.
Considered the promising anode material for next-generation high-energy lithium-ion batteries, SiOx has been slow to commercialize due to its low initial Coulombic efficiency (ICE) and unstable solid electrolyte interface (SEI) layer, which leads to reduced full-cell energy density, short cycling lives, and poor rate performance. Herein, a novel strategy is proposed to in situ construct an artificial hybrid SEI layer consisting of LiF and Li3Sb on a prelithiated SiOx anode via spontaneous chemical reaction with SbF3. In addition to the increasing ICE (94.5%), the preformed artificial SEI layer with long-term cycle stability and enhanced Li+ transport capability enables a remarkable improvement in capacity retention and rate capability for modified SiOx. Furthermore, the full cell using Li(Ni0.8Co0.1Mn0.1)O2 and a pre-treated anode exhibits high ICE (86.0%) and capacity retention (86.6%) after 100 cycles at 0.5 C. This study provides a fresh insight into how to obtain stable interface on a prelithiated SiOx anode for high energy and long lifespan lithium-ion batteries.  相似文献   
8.
Phosphorus exhibits high capacity and low redox potential, making it a promising anode material for future sodium-ion batteries. However, its practical applications are confined by poor durability and sluggish kinetics. Herein, an innovative in-situ electrochemically self-driven strategy is presented to embed phosphorus nanocrystal (≈10 nm) into a Fe-N-C-rich 3D carbon framework (P/Fe-N-C). This strategy enables rapid and high-capacity sodium ion storage. Through a combination of experimental assistance and theoretical calculations, a novel synergistic catalytic mechanism of Fe-N-C is reasonably proposed. In detail, the electrochemical formation of Fe-N-C catalytic sites facilitates the release of fluorine in ester-based electrolyte, inducing Na+-conducting-enhanced solid-electrolyte interphase. Furthermore, it also effectively induces the dissociation energy of the P-P bond and promotes the reaction kinetics of P anode. As a result, the unconventional P/Fe-N-C anode demonstrates outstanding rate-capability (267 mAh g−1 at 100 A g−1) and cycling stability (72%, 10 000 cycles). Notably, the assembled pouch cell achieves high-energy density of 220 Wh kg−1.  相似文献   
9.
For the development of all-solid-state lithium metal batteries (LMBs), a high-porous silica aerogel (SA)-reinforced single-Li+ conducting nanocomposite polymer electrolyte (NPE) is prepared via two-step selective functionalization. The mesoporous SA is introduced as a mechanical framework for NPE as well as a channel for fast lithium cation migration. Two types of monomers containing weak-binding imide anions and Li+ cations are synthesized and used to prepare NPEs, where these monomers are grafted in SA to produce SA-based NPEs (SANPEs) as ionomer-in-framework. This hybrid SANPE exhibits high ionic conductivities (≈10−3 S cm−1), high modulus (≈105 Pa), high lithium transference number (0.84), and wide electrochemical window (>4.8 V). The resultant SANPE in the lithium symmetric cell possesses long-term cyclic stability without short-circuiting over 800 h under 0.2 mA cm−2. Furthermore, the LiFePO4|SANPE|Li solid-state batteries present a high discharge capacity of 167 mAh g−1 at 0.1 C, good rate capability up to 1 C, wide operating temperatures (from −10 to 40 °C), and a stable cycling performance with 97% capacity retention and 100% coulombic efficiency after 75 cycles at 1 C and 25 °C. The SANPE demonstrates a new design principle for solid-state electrolytes, allowing for a perfect complex between inorganic silica and organic polymer, for high-energy-density LMBs.  相似文献   
10.
Rechargeable aqueous zinc batteries are promising energy storage devices because of their low cost, high safety, and high energy density. However, their performance is plagued by the unsatisfied cyclability due to the dendrite growth and hydrogen evolution reaction (HER) at the Zn anode. Herein, it is demonstrated that the concentrated hybrid aqueous/non-aqueous ZnCl2 electrolytes constitute a peculiar chemical environment for not only the Zn-ions but also water molecules. The high concentration of chloride ions substitutes the H2O molecular in the solvation structure of Zn2+, while the acetonitrile further interacts with H2O to decrease its activity. The hybrid electrolytes both inhibit the dendrite formation and HER, enabling an ultrahigh average Coulombic efficiency of 99.9% in the Zn||Cu half-cell and a highly reversible Zn plating/stripping with a low overpotential of 21 mV. Using this hybrid electrolyte, the Zn||polytriphenylamine (PTPAn) full cell deliveres a high discharge capacity of 110 mAh g−1, a high power density of 9200 W kg−1 at 100 °C and maintains 85% of the capacity for over 6000 cycles at 10 °C. This study provides a deep understanding between the solvation structure and columbic efficiency of Zn anode, thus inspiring the development for stable Zn batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号