首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
无线电   2篇
  2023年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Diffractive optical elements such as periodic gratings are fundamental devices in X-ray imaging – a technique that medical, material science, and security scans rely upon. Fabrication of such structures with high aspect ratios at the nanoscale creates opportunities to further advance such applications, especially in terms of relaxing X-ray source coherence requirements. This is because typical grating-based X-ray phase imaging techniques (e.g., Talbot self-imaging) require a coherence length of at least one grating period and ideally longer. In this paper, the fabrication challenges in achieving high-aspect ratio nanogratings filled with gold are addressed by a combination of laser interference and nanoimprint lithography, physical vapor deposition, metal assisted chemical etching (MACE), and electroplating. This relatively simple and cost-efficient approach is unlocked by an innovative post-MACE drying step with hexamethyldisilazane, which effectively minimizes the stiction of the nanostructures. The theoretical limits of the approach are discussed and, experimentally, X-ray nanogratings with aspect ratios >40 are demonstrated. Finally, their excellent diffractive abilities are shown when exposed to a hard (12.2 keV) monochromatic X-ray beam at a synchrotron facility, and thus potential applicability in phase-based X-ray imaging.  相似文献   
2.
To improve the Li-ion diffusion and extreme-environment performance of LiFePO4 (LFP) lithium-ion batteries, a composite cathode material is fabricated using ultra-fine nano-Mg(OH)2 (MH). First, a flexible confined space is designed in the local area of the cathode surface, through the transition of charged xanthan gum polymer molecules under electric field force and the self-assembly of the xanthan gum network. Then, the 20 nm nano-Mg(OH)2 is prepared through cathodic electrodeposition within the local flexible confined space, and subsequent in situ surface modification as it traverses the xanthan gum network under gravity. LFP-MH significantly changes the density and homogeneity of the cathode electrolyte interphase film and improves the electrolyte affinity. The Li||LFP-MH half-cell demonstrates excellent rate capability (110 mAh g−1 at 5 C) and long-term cycle performance (116.6 mAh g−1 at 1 C after 1000 cycles), and maintains over 100 mAh g−1 after 150 cycles at 60 °C, as well as no structural collapse of the cathode material after 400 cycles at 5 V high cut-off voltage. The cell also shows an obvious decrease in inner resistance after 100 cycles (99.53/133.12 Ω). This work provides a significant advancement toward LiFePO4 lithium-ion batteries with excellent electrochemical performance and tolerance to extreme-environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号