首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16190篇
  免费   2348篇
  国内免费   936篇
电工技术   2390篇
技术理论   1篇
综合类   1365篇
化学工业   1345篇
金属工艺   249篇
机械仪表   1251篇
建筑科学   1114篇
矿业工程   391篇
能源动力   413篇
轻工业   320篇
水利工程   433篇
石油天然气   384篇
武器工业   312篇
无线电   4011篇
一般工业技术   2086篇
冶金工业   282篇
原子能技术   83篇
自动化技术   3044篇
  2024年   110篇
  2023年   504篇
  2022年   500篇
  2021年   782篇
  2020年   782篇
  2019年   637篇
  2018年   531篇
  2017年   641篇
  2016年   658篇
  2015年   690篇
  2014年   1052篇
  2013年   1024篇
  2012年   1149篇
  2011年   1223篇
  2010年   977篇
  2009年   912篇
  2008年   820篇
  2007年   975篇
  2006年   899篇
  2005年   747篇
  2004年   622篇
  2003年   546篇
  2002年   465篇
  2001年   419篇
  2000年   409篇
  1999年   245篇
  1998年   197篇
  1997年   183篇
  1996年   157篇
  1995年   140篇
  1994年   103篇
  1993年   78篇
  1992年   60篇
  1991年   58篇
  1990年   39篇
  1989年   34篇
  1988年   25篇
  1987年   8篇
  1986年   9篇
  1985年   7篇
  1984年   11篇
  1983年   10篇
  1982年   12篇
  1981年   3篇
  1980年   9篇
  1978年   2篇
  1977年   2篇
  1959年   1篇
  1958年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
诱导式卫星欺骗干扰可诱导航空器逐渐偏离预定航迹,难以被发现,因此及时有效地检测干扰是飞行安全的保障。在现有紧组合导航体制基础上,设计了一种基于误差估值累加开环校正的紧组合导航结构,并证明了其性能与传统闭环校正紧组合导航性能等效。在此结构中,将紧组合导航系统与自适应序贯概率比检测方法结合,提出了一种基于误差估值累加开环校正的诱导式欺骗检测方法,融合紧组合导航信息与其他不受欺骗影响的导航信息,构建欺骗检测统计量进行诱导式欺骗检测。仿真结果表明,开环校正结构可避免随时间累加的惯性导航系统误差所导致的组合导航滤波器发散问题,同时欺骗检测方法可进一步提高算法对“最坏”情形下微小诱导式欺骗的检测效果。  相似文献   
2.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
3.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
4.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
5.
《Ceramics International》2022,48(11):15056-15063
Hydrogen (H2) sensors based on metal oxide semiconductors (MOS) are promising for many applications such as a rocket propellant, industrial gas and the safety of storage. However, poor selectivity at low analyte concentrations, and independent response on high humidity limit the practical applications. Herein, we designed rGO-wrapped SnO2–Pd porous hollow spheres composite (SnO2–Pd@rGO) for high performance H2 sensor. The porous hollow structure was from the carbon sphere template. The rGO wrapping was via self-assembly of GO on SnO2-based spheres with subsequent thermal reduction in H2 ambient. This sensor exhibited excellently selective H2 sensing performances at 390 °C, linear response over a broad concentration range (0.1–1000 ppm) with recovery time of only 3 s, a high response of ~8 to 0.1 ppm H2 in a minute, and acceptable stability under high humidity conditions (e. g. 80%). The calculated detection limit of 16.5 ppb opened up the possibility of trace H2 monitoring. Furthermore, this sensor demonstrated certain response to H2 at the minimum concentration of 50 ppm at 130 °C. These performances mainly benefited from the special hollow porous structure with abundant heterojunctions, the catalysis of the doped-PdOx, the relative hydrophobic surface from rGO, and the deoxygenation after H2 reduction.  相似文献   
6.
This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development.  相似文献   
7.
Sustainable and efficient food supply chain has become an essential component of one’s life. The model proposed in this paper is deeply linked to people's quality of life as a result of which there is a large incentive to fulfil customer demands through it. This proposed model can enhance food quality by making the best possible food quality accessible to customers, construct a sustainable logistics system considering its environmental impact and ensure the customer demand to be fulfilled as fast as possible. In this paper, an extended model is examined that builds a unified planning problem for efficient food logistics operations where four important objectives are viewed: minimising the total expense of the system, maximising the average food quality along with the minimisation of the amount of CO2 emissions in transportation along with production and total weighted delivery lead time minimisation. A four objective mixed integer linear programming model for intelligent food logistics system is developed in the paper. The optimisation of the formulated mathematical model is proposed using a modified multi-objective particle swarm optimisation algorithm with multiple social structures: MO-GLNPSO (Multi-Objective Global Local Near-Neighbour Particle Swarm Optimisation). Computational results of a case study on a given dataset as well as on multiple small, medium and large-scale datasets followed by sensitivity analysis show the potency and effectiveness of the introduced method. Lastly, there has been a scope for future study displayed which would lead to the further progress of these types of models.  相似文献   
8.
In this paper, the dynamic behaviors on the basis of simulation for high-purity heat integrated air separation column (HIASC) are studied. A nonlinear generic model control (GMC) scheme is proposed based on the nonlinear behavior analyses of a HIASC process, and an adaptive generic model control (AGMC) scheme is further presented to correct the model parameters online. Related internal model control (IMC) scheme and multi-loop PID (M-PID) scheme are also developed as the comparative base. The comparative researches are carried out among these linear and nonlinear control schemes in detail. The simulation research results show that the proposed AGMC schemes present advantages in both servo control and regulatory control for the high-purity HIASC.  相似文献   
9.
ABSTRACT

Contact tracing is widely considered as an effective procedure in the fight against epidemic diseases. However, one of the challenges for technology based contact tracing is the high number of false positives, questioning its trust-worthiness and efficiency amongst the wider population for mass adoption. To this end, this paper proposes a novel, yet practical smartphone-based contact tracing approach, employing WiFi and acoustic sound for relative distance estimate, in addition to the air pressure and the magnetic field for ambient environment matching. We present a model combining six smartphone sensors, prioritising some of them when certain conditions are met. We empirically verified our approach in various realistic environments to demonstrate an achievement of up to 95% fewer false positives, and 62% more accurate than Bluetooth-only system. To the best of our knowledge, this paper was one of the first work to propose a combination of smartphone sensors for contact tracing.  相似文献   
10.
One of the major challenges in wireless body area networks (WBANs) is sensor fault detection. This paper reports a method for the precise identification of faulty sensors, which should help users identify true medical conditions and reduce the rate of false alarms, thereby improving the quality of services offered by WBANs. The proposed sensor fault detection (SFD) algorithm is based on Pearson correlation coefficients and simple statistical methods. The proposed method identifies strongly correlated parameters using Pearson correlation coefficients, and the proposed SFD algorithm detects faulty sensors. We validated the proposed SFD algorithm using two datasets from the Multiparameter Intelligent Monitoring in Intensive Care database and compared the results to those of existing methods. The time complexity of the proposed algorithm was also compared to that of existing methods. The proposed algorithm achieved high detection rates and low false alarm rates with accuracies of 97.23% and 93.99% for Dataset 1 and Dataset 2, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号