首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22667篇
  免费   2126篇
  国内免费   2057篇
电工技术   3023篇
技术理论   1篇
综合类   1735篇
化学工业   2395篇
金属工艺   1073篇
机械仪表   1473篇
建筑科学   777篇
矿业工程   383篇
能源动力   1493篇
轻工业   1028篇
水利工程   175篇
石油天然气   475篇
武器工业   418篇
无线电   5617篇
一般工业技术   2534篇
冶金工业   477篇
原子能技术   2447篇
自动化技术   1326篇
  2024年   64篇
  2023年   245篇
  2022年   526篇
  2021年   699篇
  2020年   594篇
  2019年   544篇
  2018年   484篇
  2017年   758篇
  2016年   899篇
  2015年   867篇
  2014年   1166篇
  2013年   1667篇
  2012年   1585篇
  2011年   1782篇
  2010年   1327篇
  2009年   1373篇
  2008年   1295篇
  2007年   1641篇
  2006年   1452篇
  2005年   1220篇
  2004年   1003篇
  2003年   944篇
  2002年   747篇
  2001年   644篇
  2000年   484篇
  1999年   460篇
  1998年   368篇
  1997年   317篇
  1996年   298篇
  1995年   247篇
  1994年   206篇
  1993年   158篇
  1992年   150篇
  1991年   119篇
  1990年   102篇
  1989年   77篇
  1988年   72篇
  1987年   56篇
  1986年   41篇
  1985年   46篇
  1984年   28篇
  1983年   18篇
  1982年   26篇
  1981年   23篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   2篇
  1959年   11篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
1.
The low overall survival rate of patients with pancreatic cancer has driven research to seek a new therapeutic protocol. Radiotherapy (RT) is frequently an option in the neoadjuvant or palliative settings for pancreatic cancer treatment. This study explored the effect of RT protocols on the tumor microenvironment (TME) and their consequent impact on anti-programmed cell death ligand-1 (PD-L1) therapy. Using a murine orthotopic pancreatic tumor model, UN-KC-6141, RT-disturbed TME was examined by immunohistochemical staining. The results showed that ablative RT is more effective than fractionated RT at recruiting T cells. On the other hand, fractionated RT induces more myeloid-derived suppressor cell infiltration than ablative RT. The RT-disturbed TME presents a higher perfusion rate per vessel. The increase in vessel perfusion is associated with a higher amount of anti-PD-L1 antibody being delivered to the tumor. Animal survival is increased by anti-PD-L1 therapy after ablative RT, with 67% of treated animals surviving more than 30 days after tumor inoculation compared to a median survival time of 16.5 days for the control group. Splenocytes isolated from surviving animals were specifically cytotoxic for UN-KC-6141 cells. We conclude that the ablative RT-induced TME is more suited than conventional RT-induced TME to combination therapy with immune checkpoint blockade.  相似文献   
2.
Three-dimensional Bödewadt flow (fluid rotates at a large enough distance from the stationary plate) of carbon nanomaterial is examined. Single walled and multi walled CNTs are dissolved in water and gasoline oil baseliquids. Darcy-Forchheimer porous medium is considered. Stationary disk is further stretched linearly in radial direction. Heat transfer effect is examined in presence of radiation and convection. Effect of viscous dissipation is accounted. Entropy generation rate is studied. By using adequate transformation (von Kármán relations), the flow field equations (PDEs) are transmitted into ODEs. Solutions to these ODEs are constructed via implementation of shooting method (bvp4c). In addition to Entropy generation rate, Bejan number, heat transfer rate (Nusselt number), skin friction and temperature of fluid are examined through involved physical parameters. Axial component of velocity intensifies with increment in nanoparticles volume fraction and ratio of stretching rate to angular velocity parameter while it decays with higher porosity parameter. Higher nanoparticles volume fraction and porosity parameter lead to decay in radial as well as tangential component of velocity. However it enhances with higher ratio of stretching rate to angular velocity parameter. Temperature of fluid directly varies with higher ratio of stretching rate to angular velocity parameter, radiation parameter, Eckert number, Biot number and nanoparticles volume fraction. Rate of Entropy generation is reduced with higher estimations of porosity parameter, nanoparticles volume fraction and radiation parameter. Skin friction coefficient decays with higher porosity parameter and ratio of stretching rate to angular velocity parameter. Intensification in porosity parameter, nanoparticles volume fraction and Biot number leads to higher Nusselt number. Prominent impact is shown by multiple-walled CNTs with gasoline oil basefluid than single-walled CNTs with water basefluid.  相似文献   
3.
He-3 is generally recognized for its ability to provide more excellent thermophysical performance than He-4, especially in the 4 K temperature range. However, this was not always the case in our preliminary experiments on a three-stage Stirling-type pulse tube cryocooler (SPTC). Our ongoing studies, as reported in this paper, demonstrate that the different working fluids also affect the performance through their phase shifting capability. This feature has been passed over in large part by researchers considering refrigerant substitution. Unlike previous theoretical analyses that focus primarily on regenerator losses, this report investigates the effects of the working fluid on the phase angle at the cold end in order to quantitatively reveal the relationship between the lowest attainable temperature and the cooling capacity. The analysis agrees well with our experimental results on a three-stage SPTC. While running with the operating parameters optimized for He-3, the lowest temperature of the SPTC decreased from 5.4 K down to 4.03 K. This is the lowest refrigeration temperature ever achieved with a three-stage SPTC.  相似文献   
4.
Radiophotoluminescence phenomena have been widely investigated on various types of materials for dosimetry applications. We report that an aluminoborosilicate glass containing 0.005 mol% copper exhibits intense photoluminescence in the visible region induced by X-ray and γ-ray irradiation. The luminescence is assigned to the 3d94s1 → 3d10 transition of Cu+. The proportionality of the intensity of the induced photoluminescence to the irradiation dose was confirmed up to 0.5 kGy using 60Co γ-ray irradiation. Based on the spectroscopic results, a potential mechanism was proposed for the enhancement of the photoluminescence. The exposure to the ionizing radiation generates electron-hole pairs in the glass, and the electrons are subsequently captured by the Cu2+ ions, which are converted to Cu+ and emit the luminescence. For the glass containing 0.01 mol% copper, the pronounced enhancement of the photoluminescence was not observed because the reverse reaction, ie, the capture of the holes by the Cu+ ions, becomes prominent. The photoluminescence induced by the irradiation was stably observed for the glasses kept at room temperature and even for the glasses heat-treated at 150°C. However, the induced photoluminescence could be eliminated by the heat treatment at a temperature at 500°C, and the glass returned to the initial pre-irradiation state. The Cu-doped aluminoborosilicate glass is a potential candidate for use in dosimetry applications.  相似文献   
5.
In this article, two novel kinds of focusing elements as reflectors are analyzed and compared. One is the grooved Fresnel zone plate reflector with continuous phase‐correcting. The other called subzone paraboloid reflector, has the profile that consists of a series of paraboloids. Their diffraction efficiencies and bandwidths are described. The two elements still preserve the advantages of Fresnel zone plates, namely, low profile, high efficiency, and simple fabrication. Two dual‐reflector antennas using the proposed focusing elements as the main reflectors are simulated and the results show that these antennas have good radiation performances. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:101–108, 2015.  相似文献   
6.
Radiation therapy is a technology-driven cancer treatment modality that has experienced significant advances over the last decades, due to multidisciplinary contributions that include engineering and computing. Recent technological developments allow the use of noncoplanar volumetric modulated arc therapy (VMAT), one of the most recent photon treatment techniques, in clinical practice. In this work, an automated noncoplanar arc trajectory optimization framework designed in two modular phases is presented. First, a noncoplanar beam angle optimization algorithm is used to obtain a set of noncoplanar irradiation directions. Then, anchored in these directions, an optimization strategy is proposed to compute an optimal arc trajectory. The computational experiments considered a pool of twelve difficult head-and-neck tumor cases. It was possible to observe that, for some of these cases, the optimized noncoplanar arc trajectories led to significant treatment planning quality improvements, when compared with coplanar VMAT treatment plans. Although these experiments were done in a research environment treatment planning software (matRad), the conclusions can be of interest for a clinical setting: automated procedures can simplify the current treatment workflow, produce high-quality treatment plans, making better use of human resources and allowing for unbiased comparisons between different treatment techniques.  相似文献   
7.
8.
The Fe−Ni−TiO2 nanocomposite coatings were electrodeposited by pulse frequency variation. The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies. By increasing the pulse frequency from 10 to 500 Hz, the iron and TiO2 nanoparticles contentswere increased in expense of nickel content. XRD patterns showed that by increasing the frequency to 500 Hz, an enhancement ofBCC phase was observed and the grain size of deposits was reduced to 35 nm. The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO2 nanoparticles into the Fe−Ni matrix (5.13 wt.%). Moreover, the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.  相似文献   
9.
Cancer remains an intractable medical problem. Rapid diagnosis and identification of cancer are critical to differentiate it from nonmalignant diseases. High-throughput biofluid metabolic analysis has potential for cancer diagnosis. Nevertheless, the present metabolite analysis method does not meet the demand for high-throughput screening of diseases. Herein, a high-throughput, cost-effective, and noninvasive urine metabolic profiling method based on TiO2/MXene-assisted laser desorption/ionization mass spectrometry (LDI-MS) is presented for the efficient screening of bladder cancer (BC) and nonmalignant urinary disease. Combined with machine learning, TiO2/MXene-assisted LDI-MS enables high diagnostic accuracy (96.8%) for the classification of patient groups (including 47 BC and 46 ureteral calculus (UC) patients) from healthy controls (113 cases). In addition, BC patients can also be identified from noncancerous UC individuals with an accuracy of 88.3% in the independent test cohort. Furthermore, metabolite variations between BC and UC individuals are investigated based on relative quantification, and related pathways are also discussed. These results suggest that this method, based on urine metabolic patterns, provides a potential tool for rapidly distinguishing urinary diseases and it may pave the way for precision medicine.  相似文献   
10.
龚学鹏  卢启鹏 《仪器仪表学报》2015,36(10):2347-2354
为了保证上海光源X射线干涉光刻光束线的稳定性,减小热变形对实验结果的影响,对X射线干涉光刻光束线的3个关键光学元件——偏转镜、聚焦镜和精密四刀狭缝进行热-结构耦合分析。首先,计算偏转镜、聚焦镜和精密四刀狭缝所承载的功率密度;然后,建立其有限元模型;最后,获得光学元件的温度场和热变形的结果。结果表明,偏转镜和聚焦镜采用间接水冷方式可有效抑制热变形,冷却后的最大面形误差分别为7.2μrad和9.2μrad。精密四刀狭缝未冷却时,刀片组件温度介于271.56~273.27℃,刀口热变形为0.19 mm,直线导轨热变形为0.08 mm;经过铜辫子冷却后,刀片组件温度降至22.24~23.94℃,刀口热变形降至0.2μm,直线导轨热变形降至0.1μm;采用影像法和接触探头法测试后,刀口直线度、平行度和重复精度均满足技术要求。偏转镜、聚焦镜和精密四刀狭缝的热变形通过间接水冷和铜辫子的冷却方式可以得到很大程度的抑制,进而保证光斑质量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号