首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  国内免费   1篇
综合类   1篇
无线电   2篇
一般工业技术   4篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
为了解决氧化钌(RuO2)沉积电位过高, 难以在三维微结构金属集流体上直接沉积的问题, 提出采用分步电沉积方法在微三维结构镍(Ni)集流体上制备RuO2复合膜电极, 即先在三维微结构Ni集流体上沉积聚吡咯/氧化石墨烯(PPy/GO)薄膜作为基底, 经热处理后, 在基底上二次沉积出RuO2颗粒, 最后再对RuO2复合薄膜进行二次热处理。扫描电子显微镜(SEM)观察显示, 随着热处理温度的升高, 薄膜表面多孔结构增多, 达到了提高膜电极结构孔隙分布的目的。能量分散谱(EDS)和X射线光电子能谱分析(XPS)表明, 薄膜中无定形RuO2·xH2O的存在保证了膜电极的大比容量。电化学性能测试结果表明, 经105℃处理后的膜电极电化学性能最佳, 比电容为28.5 mF/cm2, 能量密度为0.04 Wh/m2, 功率密度为14.25 W/m2。采用分步电沉积方法制备出的RuO2复合薄膜是一种良好的MEMS超级电容器电极材料。  相似文献   
2.
Abstract

In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2  x  2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm?2 measured at 5 mV s?1), best rate capability and excellent stability at potentials below ?0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x  3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.  相似文献   
3.
基于激光加工的平面型微型超级电容器   总被引:1,自引:0,他引:1  
随着便携式可穿戴电子产品的快速发展,亟需开发小型化柔性新能源储能器件与之匹配。平面型微型超级电容器(MSC)因具有功率密度高、循环寿命长、易于集成等特点,在微型储能器件中备受关注。在多种构建微型超级电容器的方法中,激光处理是一种便捷高效、可快速集成化的加工手段。鉴于此,综述了激光加工平面型微型超级电容器的研究进展,包括激光辅助构建微型储能器件的方式、典型的激光加工的平面型微型超级电容器及其电极材料,材料包括石墨烯类、MXene类、金属氧化物类、聚合物类以及金属有机框架(MOF)类等。同时,对激光加工微型超级电容器未来的发展趋势和面临的挑战进行了展望。  相似文献   
4.
基于聚吡咯微电极的MEMS微型超级电容器的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
周扬 《电子器件》2011,34(1):1-6
MEMS 微能源是指采用微加工技术制作实现能量的获取与转换、存储与释放的微纳器件与系统,而微型超级电容器则是一种基于电化学电容实现储能的微型能量存储器件,可作为能量存储单元在MEMS微电源系统中获得应用.设计制作了一种具有两腔并排式结构的微型聚吡咯超级电容器.该微型超级电容器南微结构,微电极功能薄膜以及酸性电解液构成,...  相似文献   
5.
A novel type of sulfur-doped graphene fibers (S-GFs) were prepared by the hydrothermal strategy, the in situ interfacial polymerization method and the annealing method. Two S-GFs were assembled into an all-solid-state fibriform micro-supercapacitor (micro-SC) that is flexible and has a high specific capacitance (4.55 mF·cm^-2) with the current density of 25.47 pA·cm^-2. The cyclic voltammetry (CV) curve of this micro-SC kept the rectangular shape well even when the scan rate reached 2 V·s^-1. There is a great potential for this type of S-GFs used in flexible wearable electronics.  相似文献   
6.
刻蚀Ti3AlC2 MAX相陶瓷粉末得到单层和少层的Ti3C2Tx MXene纳米片,通过低温(-50 ℃)冷冻干燥,制备了具有多孔结构的Ti3C2Tx气凝胶(Ti3C2Tx aerogel)。利用光刻胶技术,在滤纸上刻出叉指状电极阵列,然后以Ti3C2Tx气凝胶为电极活性物质构建了全固态微型超级电容器(mSC)。电化学测试表明,当电流密度为0.5 mA/cm2时,基于Ti3C2Tx气凝胶的微型超级电容器的面积电容达到77.90 mF/cm2,是相同条件下纯Ti3C2Tx MXene微型超级电容器的4.17倍。功率密度和能量密度分别为0.29 W/cm3和9.89 (mW·h)/cm3,循环1 000次电容保持率为91.6%。因此,该高性能的微型超级电容器在柔性微电子器件中显示出巨大的应用潜力。  相似文献   
7.
As promising candidates for energy-storage devices,supercapacitors (SCs) have attracted considerable attention because of their unique features,such as their high power density,outstanding rate capability,excellent cycling performance,and safety.The recent boom in portable electronic devices requires high-performance SCs that are flexible,simplified,thin,and integrated.Tremendous efforts have been directed towards the design and integration of planar microSCs (MSCs) based on different active electrode materials by various methods.This review highlights the recent developments in the device design of flexible planar MSCs and their integration with other electronic devices.The current challenges and future prospects for the development of flexible MSCs are also discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号