首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   2篇
电工技术   1篇
化学工业   1篇
机械仪表   1篇
轻工业   2篇
无线电   5篇
一般工业技术   4篇
自动化技术   4篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2018年   2篇
  2017年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2008年   2篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有18条查询结果,搜索用时 283 毫秒
1.
Mitochondrial dysfunctions are implicated in several pathologies, such as metabolic, cardiovascular, respiratory, and neurological diseases, as well as in cancer and aging. These metabolic alterations are usually assessed in human or murine samples by mitochondrial respiratory chain enzymatic assays, by measuring the oxygen consumption of intact mitochondria isolated from tissues, or from cells obtained after physical or enzymatic disruption of the tissues. However, these methodologies do not maintain tissue multicellular organization and cell-cell interactions, known to influence mitochondrial metabolism. Here, we develop an optimal model to measure mitochondrial oxygen consumption in heart and lung tissue samples using the XF24 Extracellular Flux Analyzer (Seahorse) and discuss the advantages and limitations of this technological approach. Our results demonstrate that tissue organization, as well as mitochondrial ultrastructure and respiratory function, are preserved in heart and lung tissues freshly processed or after overnight conservation at 4 °C. Using this method, we confirmed the repeatedly reported obesity-associated mitochondrial dysfunction in the heart and extended it to the lungs. We set up and validated a new strategy to optimally assess mitochondrial function in murine tissues. As such, this method is of great potential interest for monitoring mitochondrial function in cohort samples.  相似文献   
2.
A method to print two materials of different functionality during the same printing step is presented. In printed electronics, devices are built layer by layer and conventionally only one type of material is deposited in one pass. Here, the challenges involving printing of two emissive materials to form polymer light‐emitting diodes (PLEDs) that emit light of different wavelengths without any significant changes in the device characteristics are described. The surface‐energy‐patterning technique is utilized to print materials in regions of interest. This technique proves beneficial in reducing the amount of ink used during blade coating and improving the reproducibility of printed films. A variety of colors (green, red, and near‐infrared) are demonstrated and characterized. This is the first known attempt to print multiple materials by blade coating. These devices are further used in conjunction with a commercially available photodiode to perform blood oxygenation measurements on the wrist, where common accessories are worn. Prior to actual application, the threshold conditions for each color are discussed, in order to acquire a stable and reproducible photoplethysmogram (PPG) signal. Finally, based on the conditions, PPG and oxygenation measurements are successfully performed on the wrist with green and red PLEDs.  相似文献   
3.
Electron spin resonance (ESR) spectroscopy is able to directly measure the chemical species with unpaired electrons and has been widely used in a number of research fields. This review focused on its application in nutraceutical and food research. Current status of ESR in free radical scavenging capacity estimation, food oxidative stability evaluation, Cu(2+) chelating capacity determination were summarized. Also discussed was the potential of ESR spin-label oximetry technique in examination of lipid peroxidation and oxygen diffusion-concentration products in liposomes, oxygen transport and depletion, and membrane structure and dynamic properties. In addition, ESR application in identifying and estimating irradiated foods including meat, fruits, vegetables, spices, cereal grains, and oil seeds was reviewed. Finally, the potential use of ESR technique in investigating microstructure change, phase transition and viscosity related properties during food formulation, processing, and storage was briefly mentioned, along with its potential in determination of radio-stability of food components. This review may provide some fundamental knowledge of ESR and its application in nutraceutical and food research.  相似文献   
4.
Organic light-emitting diodes (OLEDs) are established as a mainstream light source for display applications and can now be found in a plethora of consumer electronic devices used daily. This success can be attributed to the rich luminescent properties of organic materials, but efficiency enhancement made over the last few decades has also played a significant role in making OLEDs a practically viable technology. This report summarizes the efforts made so far to improve the external quantum efficiency (EQE) of OLEDs and discusses what should further be done to push toward the ultimate efficiency that can be offered by OLEDs. The study indicates that EQE close to 58% and 80% can be within reach without and with additional light extraction structures, respectively, with an optimal combination of cavity engineering, low-index transport layers, and horizontal dipole orientation. In addition, recent endeavors to identify possible applications of OLEDs beyond displays are presented with emphasis on their potential in wearable healthcare, such as OLED-based pulse oximetry as well as phototherapeutic applications based on body-attachable flexible OLED patches. OLEDs with fabric-like form factors and washable encapsulation strategies are also introduced as technologies essential to the success of OLED-based wearable electronics.  相似文献   
5.
针对脉搏波信号幅度小噪声大等问题,提出并设计了一款基于CMOS的脉搏血氧采集传感器信号处理电路.采用UMC 0.18 μm 1P6M CMOS工艺进行设计,提出一种能有效放大微弱信号、减小噪声且滤除高频信号的信号处理电路,从而使信号达到模数转换的输入范围.芯片测试结果表明:该芯片在1.8V单电源的供电下,输出动态范围为0.7V~1.4V,芯片的可变增益范围为30 dB~54 dB,共模抑制比和电源抑制比均大于88 dB,芯片的总体功耗为360 μW,达到了预期的效果.  相似文献   
6.
7.
Development of unconventional technologies for wireless collection and analysis of quantitative, clinically relevant information on physiological status is of growing interest. Soft, biocompatible systems are widely regarded as important because they facilitate mounting on external (e.g., skin) and internal (e.g., heart and brain) surfaces of the body. Ultraminiaturized, lightweight, and battery‐free devices have the potential to establish complementary options in biointegration, where chronic interfaces (i.e., months) are possible on hard surfaces such as the fingernails and the teeth, with negligible risk for irritation or discomfort. Here, the authors report materials and device concepts for flexible platforms that incorporate advanced optoelectronic functionality for applications in wireless capture and transmission of photoplethysmograms, including quantitative information on blood oxygenation, heart rate, and heart rate variability. Specifically, reflectance pulse oximetry in conjunction with near‐field communication capabilities enables operation in thin, miniaturized flexible devices. Studies of the material aspects associated with the body interface, together with investigations of the radio frequency characteristics, the optoelectronic data acquisition approaches, and the analysis methods capture all of the relevant engineering considerations. Demonstrations of operation on various locations of the body and quantitative comparisons to clinical gold standards establish the versatility and the measurement accuracy of these systems, respectively.  相似文献   
8.
Pulse oximetry is a well-established technique in human and veterinary medicine. In farm animals, it could also be a useful tool for the detection of critical conditions relating to oxygen supply and the cardiovascular system. Among other uses, an innovative application could be the monitoring of fetuses during birth. This could help in the early identification of critical situations and support farmers and veterinarians in their decision to start obstetric or life-support interventions. Until now, however, its use in ruminant medicine was still limited to experimental applications. The objective of this study was to evaluate the accuracy of the Radius-7 Wearable Pulse CO-Oximeter (Masimo Corporation, Irvine, CA) for monitoring vital parameters in newborn calves. All measurements were conducted on animals in the lying down position. The sensor of the pulse oximeter was placed in the interdigital space of the calves' front legs and fixed with a homemade latex hoof cover. The pulsoximetric measurements of arterial oxygen saturation (SpO2) in 40 newborn calves were compared with the corresponding results (SaO2) from a portable blood gas analyzer (VetScan iStat1, Abaxis Inc., Union City, CA), which served as the reference. For this, an arterial blood sample was taken from the medial intermediate branch of the caudal auricular artery. In addition, the pulse rate was measured in 10 calves aged between 0 and 7 d with the pulse oximeter and simultaneously with a heart rate belt (Polar Equine Belt, Polar Electro Oy, Kempele, Finland) to determine their level of agreement. Spearman correlation coefficient for oxygen saturation was 93.8% for the pulse oximeter and the blood gas analyzer, and 97.7% for the pulse rate measured with the pulse oximeter and the heart rate belt. Bland-Altman plots revealed an overestimation of SaO2 by 2.95 ± 6.39% and an underestimation of the pulse rate by ?0.41 ± 3.18 beats per minute compared with the corresponding reference methods. In summary, the pulse oximeter is suitable for continuous monitoring of arterial oxygen saturation and pulse in newborn Holstein Friesian calves. For practical use, purpose-built technical equipment is required to attach the sensor to the calves' legs.  相似文献   
9.
It is shown that the metrological support system used throughout the world for optical pulse oximetry does not provide unification and an acceptable error level in measurements of blood oxygen saturation. A new method is proposed for calculating saturation and saturation errors, which enables one to reduce the measurement error to a level that meets current metrological specifications. Ways are considered of reducing the errors in optical pulse oximetry further.  相似文献   
10.
Abstract

A new method is reported for monitoring respiratory activity using photoplethysmography (PPG) without the need of prior knowledge of the respiratory rate range. Two channels of transmission mode PPG signals were collected from the subject's index finger and analyzed using an independent component analysis (ICA) algorithm. The respiratory activity was separated from the heart‐related pulsation in PPG after the ICA analysis. The results demonstrated that the ICA analysis could successfully extract normal and simulated apnoea respiratory activities. The algorithm was applied for both simulated signals and those collected from 10 young normal adults. The reported technique may be potentially used for the simultaneous monitoring of the pulse rate and respiratory activity based on the hardware of current pulse oximetry devices. The structure and implementation of this preliminary respiratory activity monitoring system were presented. Possible further improvements for the system performance were also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号