首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
无线电   3篇
  2021年   1篇
  2016年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Although promising, it is challenging to develop a simple and universal method for the high‐efficiency delivery of biomacromolecules into diverse cells. Here, a universal delivery platform based on gold nanoparticle layer (GNPL) surfaces is proposed. Upon laser irradiation, GNPL surfaces show such good photothermal properties that absorption of the laser energy causes a rapid increase in surface temperature, leading to enhanced membrane permeability of the cultured cells and the diffusion of macromolecules into the cytosol from the surrounding medium. The high‐efficiency delivery of different macromolecules such as dextran and plasmid DNA into different cell types is achieved, including hard‐to‐transfect mouse embryonic fibroblasts (mEFs) and human umbilical vein endothelial cells (HUVECs), while cell viability is well maintained under optimized irradiation conditions. The platform vastly outperforms the leading commercial reagent, Lipofectamine 2000, especially in transfecting hard‐to‐transfect cell lines (plasmid transfection efficiency: ≈53% vs ≈19% for mEFs and ≈44% vs ≈8% for HUVECs). Importantly, as the gold nanoparticles (GNPs) constituting the GNPL are firmly immobilized together, the potential cytotoxicity caused by endocytosis of GNPs is effectively avoided. This platform is reliable, efficient, and cost‐effective with high‐throughput and broad applicability across different cell types, opening up an innovative avenue for high‐efficiency intracellular delivery.  相似文献   
2.
Safe and efficient production of chimeric antigen receptor (CAR)-T cells is of crucial importance for cell-based cancer immunotherapy. Physical transfection methods have quickly gained in importance in the context of transfecting T-cells, since they are readily compatible with different cell types and a broad variety of cargo molecules. In particular, nanoparticle-sensitized photoporation has been introduced in recent years as a gentle yet efficient method to transiently permeabilize cells, allowing subsequent entry of external cargo molecules into the cells. Gold nanoparticles (AuNPs) have been used the most as photothermal sensitizers because they can easily form laser-induced vapor nanobubbles, a photothermal phenomenon that is shown to be particularly efficient for permeabilizing cells. However, as AuNPs are not biodegradable, clinical translation is hampered. Here, for the first time, the possibility to form laser-induced vapor nanobubbles from biocompatible polymeric nanoparticles is reported. Compared to electroporation, the most used physical transfection method for T cells, 2.5 times more living mRNA transfected human T cells are obtained via photoporation sensitized by polydopamine nanoparticles. This shows that photoporation is a viable approach for efficiently producing therapeutic engineered T-cells at a throughput easily exceeding 105 cells per second.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号