首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12415篇
  免费   1202篇
  国内免费   1055篇
电工技术   401篇
综合类   532篇
化学工业   3351篇
金属工艺   1047篇
机械仪表   533篇
建筑科学   121篇
矿业工程   188篇
能源动力   677篇
轻工业   224篇
水利工程   24篇
石油天然气   157篇
武器工业   66篇
无线电   2808篇
一般工业技术   2618篇
冶金工业   1358篇
原子能技术   163篇
自动化技术   404篇
  2024年   44篇
  2023年   198篇
  2022年   290篇
  2021年   324篇
  2020年   347篇
  2019年   309篇
  2018年   251篇
  2017年   389篇
  2016年   414篇
  2015年   469篇
  2014年   624篇
  2013年   640篇
  2012年   846篇
  2011年   935篇
  2010年   596篇
  2009年   725篇
  2008年   597篇
  2007年   754篇
  2006年   727篇
  2005年   633篇
  2004年   550篇
  2003年   604篇
  2002年   510篇
  2001年   456篇
  2000年   466篇
  1999年   258篇
  1998年   242篇
  1997年   211篇
  1996年   189篇
  1995年   163篇
  1994年   120篇
  1993年   106篇
  1992年   126篇
  1991年   130篇
  1990年   149篇
  1989年   122篇
  1988年   28篇
  1987年   22篇
  1986年   12篇
  1985年   10篇
  1984年   12篇
  1983年   7篇
  1982年   12篇
  1981年   8篇
  1980年   7篇
  1979年   14篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
2.
A new technique of EDM coring of single crystal silicon carbide (SiC) ingot was proposed in this paper. Currently single crystal SiC devices are still of high cost due to the high cost of bulk crystal SiC material and the difficulty in the fabrication process of SiC. In the manufacturing process of SiC ingot/wafer, localized cracks or defects occasionally occur due to thermal or mechanical causes resulted from fabrication processes which may waste the whole piece of material. To save the part of ingot without defects and maximize the material utilization, the authors proposed EDM coring method to cut out a no defect ingot from a larger diameter ingot which has localized defects. A special experimental setup was developed for EDM coring of SiC ingot in this study and its feasibility and machining performance were investigated. Meanwhile, in order to improve the machining rate, a novel multi-discharge EDM coring method by electrostatic induction feeding was established, which can realize multiple discharges in single pulse duration. Experimental results make it clear that EDM coring of SiC ingot can be carried out stably using the developed experimental setup. Taking advantage of the newly developed multi-discharge EDM method, both the machining speed and surface integrity can be improved.  相似文献   
3.
In this study we analyze the optoelectronic properties and structural characterization of hydrogenated polymorphous silicon thin films as a function of the deposition parameters. The films were grown by plasma enhanced chemical vapor deposition (PECVD) using a gas mixture of argon (Ar), hydrogen (H2) and dichlorosilane (SiH2Cl2). High-resolution transmission electron microscopy images and Raman measurements confirmed the existence of very different internal structures (crystalline fractions from 12% to 54%) depending on the growth parameters. Variations of as much as one order of magnitude were observed in both the photoconductivity and effective absorption coefficient between the samples deposited with different dichlorosilane/hydrogen flow rate ratios. The optical and transport properties of these films depend strongly on their structural characteristics, in particular the average size and densities of silicon nanocrystals embedded in the amorphous silicon matrix. From these results we propose an intrinsic polymorphous silicon bandgap grading thin film to be applied in a p–i–n junction solar cell structure. The different parts of the solar cell structure were proposed based on the experimental optoelectronic properties of the pm-Si:H thin films studied in this work.  相似文献   
4.
Rectangular section control technology(RSCT)was introduced to achieve high-precision profile control during silicon steel rolling.The RSCT principle and method were designed,and the whole RSCT control strategy was developed.Specifically,RSCT included roll contour design,rolling technology optimization,and control strategy development,aiming at both hot strip mills(HSMs)and cold strip mills(CSMs).Firstly,through the high-performance variable crown(HVC)work roll optimization design in the upper-stream stands and the limited shifting technology for schedule-free rolling in the downstream stands of HSMs,a hot strip with a stable crown and limited wedge,local spot,and single wave was obtained,which was suitable for cold rolling.Secondly,an approximately rectangular section was obtained by edge varying contact(EVC)work roll contour design,edge-drop setting control,and closed loop control in the upper-stream stands of CSMs.Moreover,complex-mode flatness control was realized by coordinating multiple shape-control methods in the downstream stands of CSMs.In addition,the RSCT approach was applied in several silicon-steel production plants,where an outstanding performance and remarkable economic benefits were observed.  相似文献   
5.
6.
设计了一种开关磁阻直线电机,使用JMAG软件对其进行了仿真和优化。进行了推力公式的推导,研究了导通顺序和初始位置对电机推力的影响,并分析了三种典型情况的磁力线分布。对电机的定子和动子的齿部和轭部高度、宽度及铁耗进行仿真优化,得出了最优参数。将有取向硅钢应用于该电机,研究了推力与轧制角的关系,并与使用普通硅钢的开关磁阻直线电机进行了对比,推力有一定提升。提出在动子齿部开切向槽的方案,结果表明,开切向槽对推力的影响较小,并能显著减小推力波动。  相似文献   
7.
8.
Over the past few decades, crystalline silicon solar cells have been extensively studied due to their high efficiency, high reliability, and low cost. In addition, these types of cells lead the industry and account for more than half of the market. For the foreseeable future, Si will still be a critical material for photovoltaic devices in the solar cell industry. In this paper, we discuss key issues, cell concepts, and the status of recent high-efficiency crystalline silicon solar cells.  相似文献   
9.
Two main formation routes for thaumasite exist below 15 °C. One is the direct route from C–S–H reacting with appropriate carbonate, sulfate, Ca2+ ions and excess water. The other route is the woodfordite route from ettringite reacting with C–S–H, carbonate, Ca2+ ions and excess water, in which thaumasite arises through the intermediate formation of the solid solution woodfordite. The woodfordite route for thaumasite formation appears to be relatively quicker (although still slow) than the direct route, presumably because with the former the ettringite already has the octahedral [M(OH)6] units that can facilitate the critical change from [Al(OH)6]3− to [Si(OH)6]2− groupings. Both routes are mutually dependent on each other. The presence of magnesium salts can modify the path to thaumasite formation. High pressure might be able to stabilise [Si(OH)6]2− groupings and allow thaumasite to become formed above 15 °C. This possibility is discussed.  相似文献   
10.
We are standing at the beginning of the industrialization of flexible thin-film transistor (TFT) backplanes. The two important research directions for the TFTs are (i) processability on flexible substrates and (ii) sufficient field-effect mobilities of electrons and holes to support complementary metal insulator semiconductor operation. The most important group of TFT capable semiconductors are the several modifications of silicon films: amorphous, nanocrystalline and microcrystalline. We summarize their TFT properties and their compatibility with foil substrate materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号