首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   1篇
无线电   3篇
一般工业技术   1篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 9 毫秒
1
1.
As one of the high-energy cathode materials of lithium-ion batteries (LIBs), lithium-rich-layered oxide with “single-crystal” characteristic (SC-LLO) can effectively restrain side reactions and cracks due to the reduced inner boundaries and enhanced mechanical stabilities. However, there are still high challenges for SC-LLO with diverse performance requirements, especially on their cycle stability improvement. Herein, a novel concentration gradient “single-crystal” LLO (GSC-LLO), with gradually decreasing Mn and increasing Ni contents from center to surface, is designed and prepared by combining co-precipitation and molten-salt sintering methods, yielding a capacity retention of 97.6% and an energy density retention of 95.8% within 100 cycles at 0.1 C. The enhanced performance is mostly attributed to the gradient-induced stabilized structure, free of cracks and less spinel-like structure formation after long-term cycling. Furthermore, the gradient design is also beneficial to the safety of LLOs as suggested by the improved thermal stability and reduced gas release. This study provides an effective strategy to prepare high-energy, high-stability, and high-safety LLOs for advanced LIBs.  相似文献   
2.
The rich and complex arrangements of metal atoms in high-index metal facets afford appealing physical and chemical properties, which attracts extensive research interest in material science for the applications in catalysis and surface chemistry. However, it is still a challenge to prepare large-area high-index single crystals in a controllable and cost-efficient manner. Herein, entire commercially available decimeter-sized polycrystalline Cu foils are successfully transformed into single crystals with a series of high-index facets, relying on a strain-engineered anomalous grain growth technique. The introduction of a moderate thermal-contact stress upon the Cu foil during the annealing leads to the formation of high-index grains dominated by the thermal strain of the Cu foils, rather than the (111) surface driven by the surface energy. Besides, the designed static gradient of the temperature enables the as-formed high-index grain seed to expand throughout the entire Cu foil. The as-received high-index Cu foils can serve as the templates for producing high-index single-crystal Cu-based alloys. This work provides an appealing material basis for the epitaxial growth of 2D materials, and the applications that require the unique surface structures of high-index metal foils and their alloys.  相似文献   
3.
Thermodynamic experiments in electrosorption systems yield the Gibbs free energy of adsorption, the formal charge transfer coefficient, the limiting double-layer capacity, the maximum surface concentration, the limiting potential shift of the potential of zero charge by the monolayer of adsorbate, and the attraction interaction constant as a more important result. These data for Bi single-crystal electrodes have been related to the geometrical arrangement of the adsorbate and its microscopic data, e.g. dipole moment values in the gas phase and adsorbed state, the length and molar volume of adsorbate molecule, the number of water molecules replaced by one adsorbed molecule of organic compound. The data has been compiled and discussed for many aliphatic compounds on single-crystal Bi planes, compared with the data for Bi solid drop and Hg electrodes. Small positive values of the formal charge transfer coefficient (0<γ<0.09) have been obtained characterising the substitution of water clusters, consisting of two or three water molecules, and a small dipole contribution of the functional group of adsorbate, which is directed toward the solution.  相似文献   
4.
Ni-rich layered cathode materials are progressively considered as the standard configuration of high-energy electric vehicles by virtues of their high capacity and eliminated “range anxiety.” However, the poor cyclic stability and severe cobalt supply crisis would restrain their wide commercial applicability. Here, a cost-effective single-crystal Co-free Ni-rich cathode material LiNi0.8Mn0.18Fe0.02O2 (NMF), which outperforms widely commercial polycrystalline LiNi0.83Co0.11Mn0.06O2 (MNCM) and single-crystal LiNi0.83Co0.11Mn0.06O2 (SNCM) is reported. Surprisingly, NMF can compensate for the reversible capacity loss under the designed conditions of high-temperature and elevated-voltage, achieving a competitive energy density compared with conventional MNCM or SNCM. Combining operando characterizations and density functional theory calculation, it is revealed that NMF cathode with improved dynamic structure evolution largely alleviates the mechanical strain issue commonly found in Ni-rich cathode, which can reduce the formation of intragranular cracks and improve the safety performance. Consequently, this new Co-free NMF cathode can achieve a perfect equilibrium between material cost and electrochemical performance, which not only reduces the production cost by >15%, but also demonstrates excellent thermal stability and cycling performance..  相似文献   
5.
Molecular perovskites have demonstrated great potential for ferroelectrics and nonlinear optics; however, their charge transport properties for optoelectronics have rarely been explored. Here, understanding of charge transport behavior of molecular perovskite under X-ray excitation based on centimeter-scale TMCM-CdCl3 (TMCM+, trimethylchloromethyl ammonium) single crystal is demonstrated. The crystal is fabricated from an aqueous solution and exhibits a large bandgap of 5.51 eV, with the valence band maximum mainly dominated by the Cl-p/Cd-d states and the conduction band minimum primarily by Cd-s/Cl-p states. Charge mobility exceeding 40 cm2 V−1 s−1 and mobility–lifetime (µτ) product on the order of 10−4 cm2 V−1 for the crystal are observed. These excellent optoelectronic properties translate to an efficient photoresponse under X-ray excitation, with the sensitivity reaching 128.9 ± 4.64 µC Gyair−1 cm−2 [fivefold higher than that of the commercialized amorphous selenium (α-Se)] and a low detection limit of 1.06 μC Gyair−1 s−1 (10 V bias). This work pioneers a superior metal-based molecular perovskite single-crystal based paradigm for optoelectronic investigation, which may lead to the discovery of a new generation of X-ray detection and imaging materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号