首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25240篇
  免费   3050篇
  国内免费   1923篇
电工技术   4655篇
技术理论   1篇
综合类   2491篇
化学工业   1372篇
金属工艺   2398篇
机械仪表   2578篇
建筑科学   2184篇
矿业工程   771篇
能源动力   451篇
轻工业   875篇
水利工程   767篇
石油天然气   436篇
武器工业   335篇
无线电   3523篇
一般工业技术   3568篇
冶金工业   996篇
原子能技术   139篇
自动化技术   2673篇
  2024年   97篇
  2023年   371篇
  2022年   578篇
  2021年   760篇
  2020年   790篇
  2019年   687篇
  2018年   695篇
  2017年   959篇
  2016年   1044篇
  2015年   1159篇
  2014年   1494篇
  2013年   1503篇
  2012年   1896篇
  2011年   2070篇
  2010年   1544篇
  2009年   1665篇
  2008年   1570篇
  2007年   1847篇
  2006年   1605篇
  2005年   1314篇
  2004年   1049篇
  2003年   932篇
  2002年   737篇
  2001年   664篇
  2000年   584篇
  1999年   493篇
  1998年   371篇
  1997年   316篇
  1996年   269篇
  1995年   231篇
  1994年   181篇
  1993年   155篇
  1992年   140篇
  1991年   95篇
  1990年   82篇
  1989年   73篇
  1988年   46篇
  1987年   27篇
  1986年   20篇
  1985年   22篇
  1984年   16篇
  1983年   12篇
  1982年   12篇
  1981年   11篇
  1980年   10篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1964年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications.  相似文献   
2.
By the first-principles calculations, the sensitivity of CO, H2O and NO adsorption on Au doped SnSe2 monolayer surface is investigated. The results show that CO and H2O molecules are physically adsorbed on Au doped SnSe2 monolayer and act as donors to transfer 0.012 e and 0.044 e to the substrate, respectively. However, the NO molecule is chemically adsorbed on substrate and acts as an acceptor to obtain 0.116 e from the substrate. In addition, our results also show that the biaxial strain can effectively improve the adsorption energy and charge transfer of gas molecules adsorbed on the substrate surface. Also, the recovery time of desorbed gas molecules on the substrate surface is calculated, and the results indicate that the Au doped SnSe2 is a perfect sensing material for detection and recovery of CO and NO under ?8% strain.  相似文献   
3.
4.
《Ceramics International》2022,48(14):20000-20009
Zinc oxide (ZnO) offers a major disadvantage of asymmetry doping in terms of reliability, stability, and reproducibility of p-type doping, which is the main hindrance in realization of optoelectronic devices. The problem is even more complicated due to formation of various native defects in unintentionally doped n-type ZnO. The realization of p-type conductivity in doped ZnO requires an in-depth understanding of the formation of an effective shallow acceptor, as well as donor-acceptor compensation. Photophysical properties such as photoconductivity along with photoluminescence (PL) studies have unprecedentedly and effectively been utilized in this work to monitor the evolution of various in-gap defects. Phosphorus (P) doped ZnO thin films have been grown by RF magnetron sputtering under various Ar to O2 gas ratios to investigate the effect of O2 on the donor-acceptor compensation by comprehensive photoconductivity measurements supported by the PL studies. Initial elemental analyses indicate presence of abundant zinc vacancies (VZn) in O-rich ambience. The results predict that P sits in the zinc (Zn) site rather than the oxygen (O) site causing the formation of PZn–2VZn acceptor-like defects, which compensates the donor defects in P doped ZnO films. Photocurrent spectra uniquely reveal presence of more oxygen vacancies (VO) defects states in lower O2 flow, which gets compensated with an increase in the O2 flow. Successive photocurrent transients indicate probable presence of more VO in the films grown with lower O2 flow and more VZn in higher O2 flow. Overall the photosensitivity measurements clearly present that O-rich ambience expedites the formation of acceptor defects which are compensated, thereby lowering the dark current and enhancing the ultraviolet photosensitivity.  相似文献   
5.
A strategy that constructs the morphotropic phase boundary and manipulates the domain structure has been used to design the component of 0.96[Bi0.5(Na0.84K0.16)0.5Ti(1-x)NbxO3]-0.04SrTiO3 (BNKT-4ST-100xNb) to enhance the strain properties for actuator application. Non-equivalent Nb5+ donor doping modulates the phase transition from the mixture of rhombohedral and tetragonal phases to the pseudocubic phase and results in the coexistence of multiple phases. Moreover, the high-resolution TEM confirms the existence of polar nano regions that contribute to the macroscopic relaxor behaviour. The size of the domains is reduced with increasing Nb5+, resulting in an enhanced relaxor behaviour. The ferroelectric-relaxor transition temperature decreases from 85 to below 30 °C, implying a non-ergodic to ergodic relaxor transition. An improved strain of 0.56% and a giant normalized strain of 1120 pm/V were achieved for BNKT-4ST-1.5Nb, which were attributed to the unique domain structure in which nanodomains are embedded in an undistorted cubic matrix. Ferroelectric, antiferroelectric, and relaxor phases coexist. As the electric field is large enough, a reversible phase transition occurs. Furthermore, good temperature stability was obtained due to the stability of the nanodomains, and no degradation in strains was observed even after 104 cycles, which may originate from the reversible phase transition and dynamic domain wall. The results show that this design strategy offers a reference way to improve the strain behaviour and that BNKT-4ST-100xNb ceramics could be a potential material for high-displacement actuator applications.  相似文献   
6.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
7.
PurposeAccommodative micro-fluctuations (AMF) are small dioptric changes during accommodation. The aim of this study was to evaluate and compare changes in AMF when wearing silicone hydrogel contact lenses of two different optical designs.MethodsA multi-centre, randomised, cross-over, non-dispensing study was conducted on 68 adapted contact lens wearers aged 25–35 years to compare AMF responses to a spherical and aspheric silicone hydrogel (comfilcon A) lens designs. A Righton Speedy “i” series Auto Refractometer in accommodation analyser mode was utilized before and after reading a standard text in font size 8 on an iPhone 5 for 20 min at a 25 cm viewing distance. Phone screen brightness was set by automatic adjustment mode and ambient illumination was controlled at all sites.ResultsMean ± SD AMF change from before to after the reading task was 2.25 ± 5.6 and 0.13 ± 5.7 (relative values) for the spherical and aspheric lens designs, respectively. The difference was statistically significant (P = 0.017, Paired t-test).ConclusionsThe smaller change in AMF when using an aspheric lens design suggests reduced ciliary muscle stress when reading print on a smart phone at a close distance for short periods (20 min). Contact lens wearers who frequently use digital devices and are experiencing eye strain may benefit from switching from a spherical design to one that incorporates aspheric optics.  相似文献   
8.
Optical studies of residual strain in cadmium telluride (CdTe) films grown using molecular beam epitaxy on gallium arsenide (GaAs) substrate have been performed using photoreflectance techniques. Measurements have been conducted to determine the fundamental transition energy, heavy-hole and light-hole transition energy critical-point parameters in a range of temperatures between 12 and 300 K. There are problems inherent in the fabrication of optoelectronic devices using high-quality CdTe films, due to strain effects resulting from both the lattice mismatch (CdTe: 14.6%) and the thermal expansion coefficient difference. The CdTe film exhibits compressive stress causing valence-band splitting for light and heavy holes. We have used different models to fit the obtained experimental data and, although the critical thickness for the CdTe has been surpassed, the strain due to the lattice mismatch is still significant. However, the strain due to the thermal expansion is dominant. We have found that the fundamental transition energy, E0, is affected by the compressive strain and the characteristic values are smaller than those reported. In addition, the total strain is compressive for the full measured range, since the strain due to the lattice mismatch is one order of magnitude higher than that calculated from the thermal expansion.  相似文献   
9.
The load applied to a machine tool feed drive changes during the machining process as material is removed. This load change alters the Coulomb friction of the feed drive. Because Coulomb friction accounts for a large part of the total friction the friction compensation control accuracy of the feed drives is limited if this nonlinear change in the applied load is not considered. This paper presents a new friction compensation method that estimates the machine tool load in real time and considers its effect on friction characteristics. A friction observer based on a Kalman filter with load estimation is proposed for friction compensation control considering the applied load change. A specially designed feed drive testbed that enables the applied load to be modified easily was constructed for experimental verification. Control performance and friction estimation accuracy are demonstrated experimentally using the testbed.  相似文献   
10.
Alloy hardened steels offer excellent combination of mechanical properties, hardenability and corrosion resistance. 34CrMo4 is a medium carbon, low alloy steel widely used due to a good combination of high-strength, toughness and wear resistance. However, this steel experiences hydrogen embrittlement (HE), a complex phenomenon depending on the composition and microstructure. This work estimates de loss of the mechanical properties caused by hydrogen in electrochemically H-charged specimens in absence of mechanical stress but also, at low strain rate and constant load. H-charging for 2 and 6 h induce YS losses of about 40% and 71% and UTS losses of 39% and 59%, respectively. The synergistic effect of the stress and the H-charging process leads to a higher loss, 91%, and a faster brittle fracture even though hydrogen content is similar to those firstly H-charged and then tested in air.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号