首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
一般工业技术   18篇
  2015年   1篇
  2009年   1篇
  2007年   2篇
  2006年   3篇
  2004年   2篇
  2003年   8篇
  2000年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
This paper describes the development of a novel film-inverting design concept for falling-film absorbers. The solid surface of the absorber is segmented so that both surfaces of the falling-film are alternatively cooled in a periodic manner. A conventional tubular absorber is modified by introducing film-guiding fins between tubes to produce a film-inverting arrangement. A maximum increase in vapour absorption rate of about 100% is obtained with the film-inverting design compared to the tubular absorber. The numerical simulation indicates that the vapour absorption rate can be increased by using a large number of film-inverting segments in the absorber.  相似文献   
2.
Thermal heat driven adsorption systems using natural refrigerants have been focused on the recent energy utilization trend. However, the drawbacks of these adsorption systems are their poor performance in terms of system cooling capacity and coefficient of performance (COP). The objective of this paper is to improve the performance of thermally powered adsorption cooling system by selecting new adsorbent–refrigerant pair. Adsorption capacity of adsorbent–refrigerant pair depends on the thermophysical properties (pore size, pore volume and pore diameter) of adsorbent and isothermal characteristics of the pair. In this paper, the thermophysical properties of two PAN types of activated carbon fibers (FX-400 and KF-1000) are determined from the nitrogen adsorption isotherms. The standard nitrogen gas adsorption/desorption measurements on various adsorbents at liquid nitrogen of temperature 77.3 K were performed. Surface area of each adsorbent was determined by the Brunauer, Emmett and Teller (BET) plot of nitrogen adsorption data. Pore size distribution was measured by the Horvath and Kawazoe (HK) method. As of the adsorption/desorption isotherms, FX-400 shows very small hysteresis when the value of P/Po exceeds 0.4, while KF-1000 has no hysteresis in the whole range of P/Po. The adsorption capacity of FX-400 is about 30% higher than that of KF-1000. The adsorption equilibrium data of activated carbon fiber (ACF)-methanol are presented and correlated with simple equations. The adsorption equilibrium data of ACF (KF-1000)-water also presented in order to facilitate comparison with those of ACFs-methanol pair. The results will contribute significantly in designing the adsorber/desorber heat exchanger for thermally driven adsorption cooling system.  相似文献   
3.
A coupled heat and mass transfer model is developed to extract the transfer coefficients for falling-films from the measurements on a tubular absorber. The mass transfer coefficients obtained from the coupled model and the log-mean-difference approach agree within about 10%. For the heat transfer coefficient, the values given by the two models can differ quite significantly. The cooling water temperature distribution predicted by the coupled model agrees well with measurements. The transfer coefficients obtained from experimental measurements using the various methods reported in the literature show wide variations.  相似文献   
4.
The objectives of this paper are to analyze a combined heat and mass transfer for an ammonia–water absorption process, and to carry out the parametric analysis to evaluate the effects of important variables such as heat and mass transfer areas on the absorption rate for two different absorption modes — falling film and bubble modes. A plate heat exchanger with an offset strip fin (OSF) in the coolant side was used to design the falling film and the bubble absorber. It was found that the local absorption rate of the bubble mode was always higher than that of the falling film model leading to about 48.7% smaller size of the heat exchanger than the falling film mode. For the falling film absorption mode, mass transfer resistance was dominant in the liquid flow while both heat and mass transfer resistances were considerable in the vapor flow. For the bubble absorption mode, mass transfer resistance was dominant in the liquid flow while heat transfer resistance was dominant in the vapor region. Heat transfer coefficients had a more significant effect on the heat exchanger size (absorption rate) in the falling film mode than in the bubble mode, while mass transfer coefficients had a more significant effect in the bubble mode than in the falling film mode.  相似文献   
5.
Thermal heat driven adsorption systems have been gained considerable attention on the recent energy utilization trend. However, the drawbacks of these adsorption systems are their poor performance. It is urgently necessary to improve the system performance of the adsorption cycles. There are two major ways for the system performance improvement. One is to develop new adsorbent material well suited to low temperature heat regeneration. The other is to enhance heat and mass transfer in the adsorber/desorber heat exchanger. The objective of the paper is to investigate the system performance of an adsorption cycle. The cycle utilizes activated carbon fiber (ACF)/methanol as adsorbent/refrigerant pair. In this paper, specific cooling effect SCE and COP of the system are numerically evaluated from the adsorption equilibrium theory with different hot, cooling and chilled fluid inlet temperatures. It is confirmed that the influences of hot, cooling and chilled fluid inlet temperatures on the system performance are qualitatively similar to those of silica gel/water pair. Even though, the driving temperature levels of ACF/methanol and silica gel/water are different. There is an optimum condition for COP to reach at maximum for ACF/methanol pair. Particularly, the ACF/methanol system shows better performance with lower chilled fluid inlet temperature between −20 and 20 °C.  相似文献   
6.
Liquid films falling over banks of internally cooled horizontal tubes are often used to absorb mass from a surrounding vapor. This arrangement is particularly suitable for absorption processes where the vapor has a high heat of absorption and where high transfer rates and low pressure drops are required, as is the case of absorption heat pumps and other chemical processes. When the liquid film presents a significant resistance to heat and mass transfer, understanding the motion of the film is critical. However, mathematical models of these types of systems in the literature have generally made use of many simplifying assumptions about the behavior of the falling liquid. The formation, detachment, and impact of droplets and the associated waves and film disturbances can all affect the mixing of the liquid and can enhance transfer rates accordingly. The objective of this paper is to identify and visually document these deviations from idealized film behavior and discuss their implications on the heat and mass transfer processes, which are important to consider in the development of mechanistic models of the absorption process.  相似文献   
7.
An innovative hybrid hollow fiber membrane absorber and heat exchanger (HFMAE) made of both porous and nonporous fibers is proposed and studied via mathematical simulation. The porous fibers allow both heat and mass transfers between absorption solution phase and vapor phase, while the nonporous fibers allow heat transfer between absorption solution phase and cooling fluid phase only. The application of HFMAE on an ammonia–water absorption heat pump system as a solution-cooled absorber is analyzed and compared to a plate heat exchanger falling film type absorber (PHEFFA). The substantially higher amount of absorption obtained by the HFMAE is made possible by the vast mass transfer interfacial area per unit device volume provided. The most dominant factor affecting the absorption performance of the HFMAE is the absorption solution phase mass transfer coefficient. The application of HFMAE as the solution-cooled absorber and the water-cooled absorber in a typical ammonia–water absorption chiller allows the increase of COP by 14.8% and the reduction of the overall system exergy loss by 26.7%.  相似文献   
8.
The importance of heat and mass transfer additives in absorption chillers and heat pumps has been recognized for over three decades. However, a universally accepted model for the mechanisms responsible for enhanced absorption rates has yet to be proposed. The Marangoni effect—an instability arising from gradients in surface tension at the liquid-vapor interface—is generally accepted as the cause of the convective flows that enhance transfer rates. Certain surfactant additives can significantly improve absorption rates and thus reduce the overall transfer area required by a given machine. Any means available that can increase the efficiency and acceptability of absorption machines is to be welcomed, as this technology provides an alternative to vapor compression systems which is both environmentally friendly and more versatile with regards to energy sources. This study investigates the rate at which a surfactant additive adsorbs at a liquid-vapor interface. The residence time of the falling liquid solution in an absorber is quite short. An effective additive must not only reduce the surface tension of the solution; it must do so quickly enough to cause the Marangoni instability within the short absorption process time. The entrance region of an absorber features a freshly exposed interface at which no surfactant has adsorbed. A numerical model is used to analyze surfactant relaxation rates in a static film of additive-laced solution. Kinetic parameters for the combination of the working pair LiBr-H2O and the additive 2-ethyl-1-hexanol are derived from data in the literature for static and dynamic surface tension measurements. Bulk, interfacial and boundary parameters influencing relaxation rates are discussed for surfactant adsorption occurring in the absence of absorption, as well as for concurrent adsorption and stable vapor absorption. Initial solution conditions and absorption driving force are shown to impact the potential for instability in the effect they have on the rate of interfacial additive adsorption.  相似文献   
9.
For enhancing the vapour absorption in LiBr solution systems, a novel absorber with tube and mesh packing alternating structure is designed and investigated. Stainless steel mesh screens are folded as the longitudinal trough mesh packing, and inserted to the gaps of horizontal tubes to make the absorbent flow through the tube and mesh packing regimes successively, thus forming an alternating heat and mass transfer absorption process. Experimental investigation is conducted to characterize the absorption performance of the absorption bodies of this alternating structure and conventional horizontal coils. The results show that the average mass transfer rate and cooling load are increased by 17.2% and 6.23% respectively, which confirms that the alternating structures can promote the absorption. The mesh packing provides extended absorption area, slows down the flow and well mingles the solution, which are all beneficial for vapour absorption.  相似文献   
10.
Falling-film heat and mass transfer in an absorber can be influenced by the motion of the surrounding refrigerant vapor. In this study, the effect of the vapor flow direction on the absorption heat and mass transfer has been investigated for a falling-film helical coil absorber which is frequently used in the ammonia/water absorption refrigerators. The heat and mass transfer performance was measured for both parallel and countercurrent flow. The experiments were carried out for three different solution concentrations (3, 14, and 30%). The vapor in equilibrium with the solution is supplied to the test section. It is found that the falling-film heat and mass transfer is deteriorated in the countercurrent flow if the specific volume of the vapor solution is large. For the countercurrent flow, the high velocity of the vapor due to large specific volume seems to cause the unfavorable distribution of falling-film and reduce the heat and mass transfer performance of the ammonia absorber. The effect of vapor flow direction decreased with increasing concentration of ammonia solution since the specific volume of the ammonia vapor which is in equilibrium with the solution becomes smaller and the vapor velocity becomes lower.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号