首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
一般工业技术   19篇
  2015年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   8篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有19条查询结果,搜索用时 781 毫秒
1.
An experimental investigation of the performance of a commercially available vapor absorption refrigeration (VAR) system is described. The natural gas-fired VAR system uses aqua-ammonia solution with ammonia as the refrigerant and water as the absorbent and has a rated cooling capacity of 10 kW. The unit was extensively modified to allow fluid pressures and temperatures to be measured at strategic points in the system. The mass flow rates of refrigerant, weak solution, and strong solution were also measured. The system as supplied incorporates air-cooled condenser and absorber units. Water-cooled absorber and condenser units were fitted to extend the VAR unit's range of operating conditions by varying the cooling water inlet temperature and/or flow rates to these units. The response of the refrigeration system to variations in chilled water inlet temperature, chilled water level in the evaporator drum, chilled water flow rate, and variable heat input are presented.  相似文献   
2.
In ammonia–water absorption refrigeration systems a purification process to reduce the water content in the vapour leaving the generator is required. During this process the water content in the vapour must be reduced to a minimum, otherwise it tends to accumulate in the evaporator and strongly deteriorates the efficiency of the system. The vapour purification can be carried out by partial condensation, by establishing a liquid–vapour counter flow or by combining both methods. In systems with partial condensation, the distillation column can be composed of one or more rectifiers using different cooling mediums, and the rectifying and stripping sections. In complete condensation systems only the rectifying and stripping sections can be used. Therefore different distillation column arrangements should be considered. This paper presents a study of several distillation column configurations for single stage ammonia–water absorption refrigeration systems with partial and complete condensation. In order to evaluate and compare the different configurations, a parameter that indicates the ratio of the ammonia vapour concentration increase in each part of the column to the total ammonia purification has been defined. The analysis has been based on the system COP. Finally the efficiency in each part of the column has been calculated to estimate its design requirements.  相似文献   
3.
Although ammonia/water has been used for decades as a working pair in absorption cycles for industrial refrigeration, very limited data are available on boiling heat transfer of this mixture. The intention of this work is to carry out a bibliographic revision of the information available in the open literature about nucleate pool boiling of the ammonia/water mixture and its pure components. The experimental data have been compared with existing prediction correlations for the pure components and also for their mixtures.For water, all the pure component pool boiling correlations gave similar predictions and were in good agreement with experimental data. For ammonia the prediction of the correlation and the experimental data showed more differences.At a given heat flux, the experimental data show that the mixture pool boiling heat transfer coefficient is lower than that obtained with pure components. Three of the well-known correlations for mixtures were compared against the experimental data. None of these correlations provided a good prediction of the mixture pool boiling heat transfer coefficient over a wide range of mass fraction. Furthermore, a new correlation has been proposed.  相似文献   
4.
The objectives of this paper are to visualize the bubble behavior during the NH3/H2O absorption process with chemical surfactant and nano-particles and to study the effect of nano-particles and surfactants on the absorption characteristics. Binary nanofluid which means binary mixture with nano-sized particles is tested to apply nanofluid to the absorption system. Cu, CuO and Al2O3 nano-particles are added into NH3/H2O solution to make the binary nanofluids, and 2-ethyl-1-hexanol, n-octanol and 2-octanol are used as the surfactants. The concentration of ammonia in the basefluid, that of nano-particles in the nanofluid, and that of surfactants in the nanofluid are considered as the key parameters. The results show that the addition of surfactants and nano-particles improves the absorption performance up to 5.32 times. It can be concluded that the addition of both surfactants and nano-particles enhances significantly the absorption performance during the ammonia bubble absorption process.  相似文献   
5.
The objectives of this paper are to visualize the bubble behavior by shadow graphic method, to examine the effect of surfactants on the bubble type absorption, and to find the optimal conditions to design highly effective compact absorber for NH3/H2O absorption system. The initial concentrations of NH3/H2O solution and the kinds and the concentrations of surfactants are considered as key parameters. By measuring the absorption rate for each condition, two effects of the addition of surfactants, the Marangoni and the barrier effect, are compared with each other. The results show that the addition of surfactant enhances the absorption performance up to 4.81 times. The experimental correlations of the effective absorption ratio for each surfactant, 2-ethyl-1-hexanol, n-octanol, and 2-octanol, are suggested within ±15, ±10, and ±10%, respectively.  相似文献   
6.
This paper presents an analysis of the influence of the distillation column components size on the vapour enrichment and system performance in small power NH3–H2O absorption machines with partial condensation. It is known that ammonia enrichment is required in this type of systems; otherwise water accumulates in the evaporator and strongly deteriorates the system performance and efficiency. The distillation column analysed consists of a stripping adiabatic section below the column feed point and an adiabatic rectifying packed section over it. The partial condensation of the vapour is produced at the top of the column by means of a heat integrated rectifier with the strong solution as coolant and a water cooled rectifier. Differential mathematical models based on mass and energy balances and heat and mass transfer equations have been developed for each one of the column sections and rectifiers, which allow defining their real dimensions. Results are shown for a given practical application. Specific geometric dimensions of the column components are considered. Different distillation column configurations are analysed by selecting and discarding the use of the possible components of the column and by changing their dimensions. The analysis and comparison of the different column arrangements has been based on the system COP and on the column dimensions.  相似文献   
7.
This paper deals with the modelling of the thermodynamic properties of the water–ammonia refrigerant mixture. Three different approaches are formulated and compared. The first is an empirical approach based on a free enthalpy model of the mixture considered as the resultant of the properties of its pure components and of an excess term corresponding to the deviation to the ideal solution concept. Secondly, a semi-empirical approach based on the PATEL and TEJA cubic equation of state is considered. Finally, a theoretical approach formulated as PC-SAFT (perturbed chain statistical associating fluid theory) equation of state is treated. A comparison of these three methods proves the superiority of PC-SAFT in predicting and extrapolating the thermodynamic properties of the water–ammonia system up to very high temperatures and pressures.  相似文献   
8.
The performance of a twin screw compressor operating under wet (two-phase) compression conditions in an ammonia–water compression absorption heat pump cycle is investigated both theoretically and experimentally. The paper reports on the influence of the location of liquid intake or, depending what applies, injection angle and mass flow rate of the injected liquid on compressor performance. Labyrinth seals separate the oil-free process side from oil lubricated bearing housing. Labyrinth seals leakage is modelled and its impact on performance is theoretically and experimentally investigated. The need for liquid injection from the discharge side to obtain acceptable performance is discussed based on experimental results.  相似文献   
9.
Numerical investigation of a diffusion absorption refrigeration cycle   总被引:4,自引:2,他引:2  
A thermodynamic model was developed for an ammonia–water diffusion absorption refrigeration (DAR) cycle with hydrogen or helium as the auxiliary inert gas, manufactured by Electrolux Sweden (currently known as Dometic). The performance of the system was examined parametrically by computer simulation. Mass and energy conservation equations were developed for each component of the cycle and solved numerically. The model was validated by comparison with previously published experimental data for DAR systems. Investigation of cycle performance under different conditions indicated that the best performance was obtained for a concentration range of the rich solution of 0.2–0.3 ammonia mass fraction and that the recommended concentration of the weak solution was 0.1. It was also found that as the degree of rectification decreased, the performance of the DAR cycle decreased. Finally, the study showed that helium was superior to hydrogen as the inert gas: the coefficient of performance of a DAR unit working with helium was higher by up to 40% than a cycle working with hydrogen.  相似文献   
10.
An innovative hybrid hollow fiber membrane absorber and heat exchanger (HFMAE) made of both porous and nonporous fibers is proposed and studied via mathematical simulation. The porous fibers allow both heat and mass transfers between absorption solution phase and vapor phase, while the nonporous fibers allow heat transfer between absorption solution phase and cooling fluid phase only. The application of HFMAE on an ammonia–water absorption heat pump system as a solution-cooled absorber is analyzed and compared to a plate heat exchanger falling film type absorber (PHEFFA). The substantially higher amount of absorption obtained by the HFMAE is made possible by the vast mass transfer interfacial area per unit device volume provided. The most dominant factor affecting the absorption performance of the HFMAE is the absorption solution phase mass transfer coefficient. The application of HFMAE as the solution-cooled absorber and the water-cooled absorber in a typical ammonia–water absorption chiller allows the increase of COP by 14.8% and the reduction of the overall system exergy loss by 26.7%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号