首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16468篇
  免费   1777篇
  国内免费   1113篇
电工技术   1376篇
综合类   1602篇
化学工业   1795篇
金属工艺   1708篇
机械仪表   1497篇
建筑科学   1157篇
矿业工程   1290篇
能源动力   688篇
轻工业   1087篇
水利工程   603篇
石油天然气   720篇
武器工业   200篇
无线电   1192篇
一般工业技术   1956篇
冶金工业   526篇
原子能技术   197篇
自动化技术   1764篇
  2024年   72篇
  2023年   246篇
  2022年   478篇
  2021年   521篇
  2020年   587篇
  2019年   489篇
  2018年   492篇
  2017年   618篇
  2016年   702篇
  2015年   724篇
  2014年   1070篇
  2013年   1130篇
  2012年   1239篇
  2011年   1312篇
  2010年   1027篇
  2009年   991篇
  2008年   821篇
  2007年   1122篇
  2006年   956篇
  2005年   790篇
  2004年   663篇
  2003年   540篇
  2002年   462篇
  2001年   382篇
  2000年   347篇
  1999年   309篇
  1998年   196篇
  1997年   213篇
  1996年   169篇
  1995年   129篇
  1994年   124篇
  1993年   78篇
  1992年   70篇
  1991年   54篇
  1990年   52篇
  1989年   37篇
  1988年   33篇
  1987年   11篇
  1986年   20篇
  1985年   13篇
  1984年   14篇
  1983年   16篇
  1982年   14篇
  1981年   3篇
  1980年   7篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1960年   1篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
In this study, the effects of cell temperature and relative humidity on charge transport parameters are numerically analyzed. In order to perform this analysis, three-dimensional and anisotropic numerical models are developed. The numerical models are integrated into the experimental values for anisotropic electrical conductivities, as depending on cell temperature and relative humidity, that were obtained from our previous study. The achieved results indicate that the values of current densities in the in-plane direction increase with increasing cell temperature and relative humidity, while the current densities reach a maximum in the rib regions for both the numerical model at the through-plane direction. The behaviors of electrolyte potentials are similar with changes in the cell temperature and relative humidity. In addition, the cathode electrical potentials in both the in-plane direction and through-plane direction do not change to a considerable amount with increasing cell temperature and relative humidity.  相似文献   
2.
《Ceramics International》2022,48(4):4401-4423
Nano-zirconia has been widely applied due to its excellent physical and chemical properties (e.g., high strength, corrosion resistance, oxygen ion conductivity). Existing preparation methods of nano-zirconia tend to require long reaction time, and the sizes of final particles are large with uneven distributions. Sub-/supercritical hydrothermal synthesis of nanoparticles is favored by researchers owing to controllable reaction process, uniform particle size distribution, good reproducibility, short reaction time, high conversion rate and harmlessness to environment. In this paper, the characteristics and mechanisms of dissolution, crystallization and growth of nano-zirconia during sub-/supercritical hydrothermal synthesis are systematically reviewed. The influences of process and material parameters on the size and purity of particles are analyzed. Then, the reaction mechanism and product phase transition mechanism during hydrothermal synthesis of zirconia are summarized to provide a theoretical reference for the oriented preparation. Finally, the improvement and commercialization of sub-/supercritical hydrothermal synthesis technology are evaluated, and the future research topics are proposed.  相似文献   
3.
This paper assesses building integrated photovoltaic (BIPV) installation parameters based on the profit generated by a photovoltaic system. It takes into consideration a home building case study and it investigates its monthly energy demand based on a specific location and a typical occupancy. The capability of a photovoltaic (PV) system to generate more profit occurs when solar intensity is maximum while the electric energy price is at its highest rate. The paper traces a framework that encompasses different aspects such as energy demand, energy price, and solar intensity. This framework identifies profit alternatives according to different installation parameters. A tool that predicts a PV installation hourly electric energy production is developed. The profit generated is simulated for home buildings located in Beirut (Lebanon) and Xihua (China), both at 33.8° latitude north. The paper highlights a new approach for BIPV installations, taking into account weather conditions, energy demand, and electric energy utility rates.  相似文献   
4.
This study aimed to evaluate the physicochemical characteristics and sensory attributes of beef burgers with the addition of pea fibre as a partial substitute of meat or fat. Three formulations were prepared: control (CON) – similar to the commercial formulation; fibre/less meat (FLM)—5% meat reduction and addition of 1% pea fibre; fibre/less fat (FLF)—7% fat reduction and addition of 1% pea fibre. Non-significant differences were obtained for pH, colour parameters (L* and b*), texture profile, cooking loss and size reduction among formulations. Moreover, sensory analysis with consumers of beef burgers did not indicate differences among the formulations for all the analysed attributes. Therefore, pea fibre is a promising partial replacer for meat and fat in beef burgers due to the preservation of technological parameters and sensory acceptance.  相似文献   
5.
《Ceramics International》2020,46(12):19942-19951
1D TiO2 nanotube arrays (TNTs), as versatile nanostructures, have attracted a considerable amount of scientific attention, particularly in photocatalytic applications. In the present study, UV radiation-assisted anodization method with various irradiation times (30–120 min) was employed as a preferable approach to fabricating TNTs with remarkable optical property and photocatalytic activity. The results revealed that in situ irradiation not only improved the surface area (from 30.10 to 48.5 m2), but also increased the roughness factor (from 77.27 to 124.73). Furthermore, UV radiation had a significant impact on optical property and by altering elemental composition, led to a red shift in absorption edge (from 3.2 to 1.4eV). Meanwhile, voltammetric experiments showed that 120 min UV radiation during anodization was able to substantially cause a surge of the photocurrent density and the photoconversion efficiency of TNTs from 0.15 to 0.55 mA cm−2 and from 13% to 40%, respectively. As a consequence of the improvement in optical property and photochemical features, anodic TNTs fabricated under 120 min UV radiation could increase the photocatalytic degradation of 2,4-DCP from 75% to 100%. Moreover, the kinetics study showed that all photocatalytic reactions followed zero-order kinetics which rate constant over the synthesized TNTs under 120 min UV radiation was about 5.1 times greater than that of conventionally fabricated TNTs. Likewise, the pathway of photocatalytic degradation and the proportion of reactive species in this process were assessed by scavenging tests. The results confirmed that holes (h+) play the main role that 53% of photocatalytic degradation occurred via both direct and indirect reactions with h+ species. The rest of the degradation pathways were also allocated to e and O2 species by accounting for 37% and 10%, respectively.  相似文献   
6.
ABSTRACT

This study investigates the effects of strain, strain rates, and forming directions (RD-rolling direction, TD-transverse direction, and ND-normal direction) on adiabatic shear, via dynamic impact compression tests using the Split Hopkinson Pressure Bar (SHPB) apparatus. A modified Johnson-Cook (J-C) constitutive model is proposed, which used to analyse the influence of the constitutive parameters on the sensitivity of adiabatic shear, employing a finite element software. The different sensitivities of adiabatic shear under different directions are explained by combining microscopic analysis and results from mechanical responses. The results show that the sensitivity of adiabatic shear can be related to the time of stress collapse in the following trend: ND?>?TD?>?RD; the sensitivities of these constitutive parameters on adiabatic shear are calculated and compared.  相似文献   
7.
Here, LiY(WO4)2 nanotubes are prepared via a feasible electrospinning technique. This new anode material shows excellent electrochemical properties. The capacity loss of LiY(WO4)2 nanotubes is as low as 6.9% after 156 cycles, while bulk LiY(WO4)2 presents the capacity loss higher than 55.0%. Even after 600 long-life cycles, the capacity loss of the nanotubes is only 9%. It can be seen that the hollow structure with a rough surface and a porous morphology contributes to the improvement of electrochemical performance. Furthermore, online X-ray diffraction (XRD) method is firstly applied to understand the lithium ions insertion/extraction mechanism of LiY(WO4)2 nanotubes. It can be concluded that it is an asymmetrical two-phase reaction. A phase transformation from LiY(WO4)2 to Li3Y(WO4)2 can be obviously seen from the in situ XRD during discharge process. While Li2Y(WO4)2 appears as an intermediate phase with a reverse charge reaction. In addition, in situ XRD also demonstrates that LiY(WO4)2 nanotubes have surprised electrochemical reversibility. All the above results indicate that LiY(WO4)2 nanotubes can be expected to be anode candidate for rechargeable lithium ion batteries (LIBs).  相似文献   
8.
ABSTRACT

A mathematical model has been developed by coupling genetic algorithm (GA) with heat and material balance equations to estimate rate parameters and solid-phase evolution related to the reduction of iron ore-coal composite pellets in a multi-layer bed Rotary hearth Furnace (RHF). The present process involves treating iron ore-coal composite pellets in a crucible over the hearth in RHF. The various solid phases evolved at the end of the process are estimated experimentally, and are used in conjunction with the model to estimate rate parameters. The predicted apparent activation energy for the wustite reduction step is found to be lower than those of the reduction of higher oxides. The thermal efficiency is found to decrease significantly with an increase in the carbon content of the pellet. Thermal efficiency was also found to increase mildly up to three layers. Multilayer bed remains as a potential design parameter to increase thermal efficiency.  相似文献   
9.
慕星宇  王佳璐 《电子测试》2020,(10):137-138,130
本文对国内外的电视技术发展现状进行了充分的研究和分析,并对超高清电视系统的相关图像技术参数进行了分析和介绍。  相似文献   
10.
The present study attempts quantitative determination of changes in the morphological surface features viz. fractal dimension, lower and upper cut off length scale through Power Spectral Density analysis prior to and after irradiation of 100 KeV Ar+ ion beam at incidence angles of 0°, 40° and 60° on ZnO thin films. All the unirradiated and irradiated samples are subjected to photoelectrochemical characterization and a correlation between photoelectrochemical performance and morphological parameters is established. Sample irradiated at 40° angle at the fluence of 5 × 1016 ions/cm2 is found to possess maximum fractal dimension of 2.72, lower and upper cut off length scale of 3.16 nm and 63.00 nm respectively. This sample exhibits maximum photocurrent density of 3.19 mA/cm2 and applied bias photon-to-current efficiency of 1.12% at 1.23 V/RHE. Hydrogen gas collected for duration of 1 h for the same sample was ~4.83 mLcm?2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号