首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
  国内免费   1篇
化学工业   12篇
金属工艺   2篇
轻工业   4篇
石油天然气   1篇
一般工业技术   36篇
  2023年   1篇
  2020年   1篇
  2018年   2篇
  2017年   4篇
  2016年   24篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
1.
Insect cuticle as a natural biocomposite includes many favored microstructures which have been refined over centuries and endow the cuticle eminent mechanical properties. This paper first studies the microstructures of chafer cuticle through SEM observations. Several peculiar fiber configurations and fiber-ply arrangements such as branched fiber, acanth-fiber and helicoid plies are observed. These microstructures are useful for man-made fiber-reinforced composites to improve their mechanical properties. Then, a special configuration of the branched fiber found in chafer cuticle is in details analyzed through a mechanical model and experimental verification. The pullout force of fibers as an index is firstly studied through parameter study. The factors, which can improve the pullout forces, are identified. Finally, the maximal pullout force of the branched fiber is experimentally tested and compared with that of plain straight fiber. It is proved that the maximal pullout force of branched fibers is obviously greater than that of the plain straight fibers.  相似文献   
2.
As biocomposites are highly sensitive to water absorption, the aim of this study was to compare the physical properties two biocomposites: (1) a flax/bio-based epoxy (Entropy SUPER SAP CLR/INS) and (2) a flax/polyurethane (HENKEL LOCTITE MAX 3). Both materials were reinforced with 14 layers of flax (TEXONIC twill 2 × 2) and manufactured using a resin transfer moulding process. Post-cured composite samples were aged at 90% RH and 30 °C for various periods of time up to 720 h. The results showed that both composites followed a Fickian diffusion behaviour. Water had a plasticizing effect on the composites and it changed their failure mode. This effect took longer to appear for the polyurethane composites. The chemical bonds between the hydroxyl groups of the fibres and the isocyanate lead to a stronger interface which improved the mechanical properties (short beam and compressive strengths) as compared to the flax/bio-epoxy composites.  相似文献   
3.
In the present work, poly(lactic acid) (PLA) sheets reinforced with organically modified montmorillonite (o-MMT) were manufactured through reactive extrusion-calendering using a masterbatch approach in a pilot plant. Reaction monitoring analysis suggests the occurrence of premature reactions between o-MMT and the reactive agent; lowering further structural changes in the polymeric matrix. While calendered sheets exhibited a homogenous and preferential distribution of clay particles in MD, the coexistence of mixed structures, involving tactoids of various sizes as well as intercalated clay layers was observed. However, a higher and finer dispersion of o-MMT particles was achieved through clay–polymer tethering via chain extender molecules. Under tensile loading, the aforementioned clay dispersion enhanced multiple cavitation processes, notably improving PLA shear flow.  相似文献   
4.
Sustainable “green nanocomposites” of polylactide (PLA) and poly(1,4-butylene succinate) (PBS) were obtained by slit die extrusion at low temperature. Dispersed PBS inclusions were sheared and longitudinally deformed with simultaneous cooling in a slot capillary and PBS nanofibers were formed. Shearing of PBS increases nonisothermal crystallization temperature by 30 °C. Tensile deformation was investigated by in-situ experiments in SEM chamber. Dominant deformation mechanism of PLA is crazing, however, there are dormant shear bands formed during slit die extrusion. Pre-existing shear bands are inactive in tensile deformation but contribute to ductility by blocking, initiating and diffusing typical craze growth. PBS nanofibers are spanning PLA craze surfaces and bridging craze gaps when PLA nanofibrils broke at large strain. Straight crazes become undulated because either dormant or new shear bands become activated between crazes. Due to interaction of crazes and shear bands the ductility increases while high strength and stiffness are retained.  相似文献   
5.
The present study provides a quantitative overview of bio-based compound processing compared to commonly used composites reinforced with short glass fibres (GF). Three reinforcing fibres were compounded with polylactide and polypropylene: abaca, man-made cellulose and conventional E-GF. The flow behaviour of corresponding melts was determined using melt flow rate (MFR) and online flow spiral test. The composite structures were analysed by means of SEM in order to investigate the fibre fracture during processing and the fibre/matrix bonding affinity. The fibre length distribution was correlated with the results from the melt flow experiments, and the structure–property relationships were determined using SEM images. It was confirmed that the fibre texture, interactions between fibres and fibre–matrix bonding are influenced by subsequent processing steps and have a substantial effect on the further composite melt processing.  相似文献   
6.
The use of glass fibre reinforced polyester composites raises many health and safety and environmental questions. One alternative is the development of high performance bio-based bio-composites with low environmental impact. Improved understanding of interfacial properties is essential to optimise the mechanical properties and durability of these materials, but so far few data are available. The present work describes the interfacial characterization of Flax fibre/Poly(lactic) acid (PLLA) system at the micro-scale using the microbond test. Different thermal treatments have been carried out (cooling rate and annealing) in order to evaluate the influence of matrix and interfacial morphologies as well as residual stress on interfacial properties. Micromechanical models have been used to determine the interfacial shear strength. When cooling rate is slow, improved interfacial properties are observed.  相似文献   
7.
Abstract

This study focuses on the fabrication of biocomposite electrode and removal of Cr (VI) ions from wastewater using a capacitive deionization (CDI) method. The activated carbon (AC) was synthesized from Bael fruit shell (BS). The synthesized AC surface has a macroporous and mesoporous structure with the large specific surface area (617.72?m2 g?1) and high adsorption capacity. The cyclic voltammetry and CDI were performed for the detection and for the removal of chromium (VI) ions, respectively. The lower level of detection of Cr (VI) by a modified electrode was found to be 10 ppt. SEM, BET, and FTIR analyses were performed to explore the surface properties of electrode materials. The removal efficiency was achieved 100% by using biocomposite electrode with an applied potential of 15?V. The highest percent removal mechanism consists of electrosorption and electroreduction due to the affinity between polyvinyl alcohol modified electrode and Cr (VI) ions, under electrochemically faradic process.  相似文献   
8.
The main goals of this work were to study the effect of different chemical treatments on sisal fiber bundles tensile properties as well as on tensile properties of composites based on poly(lactic acid) (PLA) matrix and sisal fibers. For this purpose, sisal fibers were treated with different chemical treatments. After treating sisal fibers the tensile strength values decreased respect to untreated fiber ones, especially when the combination of NaOH + silane treatment was used. Taking into account fiber tensile properties and fiber/PLA adhesion values, composites based on silane treated fibers would show the highest tensile strength value. However, composites based on alkali treated and NaOH + silane treated fibers showed the highest tensile strength values. Finally, experimental tensile strength values of composites were compared with those values obtained using micromechanical models.  相似文献   
9.
Multiscale analyses are carried out to evaluate and understand the shear properties and behaviour of a flax fibre reinforced polyamide 11 (PA 11) biocomposite. Tensile tests of [±45]n laminates are performed to evaluate the macroscale in-plane shear properties, while microbond tests are performed to evaluate the apparent interfacial shear strength. Although the shear stiffness of PA 11 biocomposites is lower than the available literature values, the shear strength is higher due to a relatively high interfacial bonding strength. Flax/PA 11 interfacial bonding is controlled by hydrogen bonding rather than adhesive pressure induced by residual thermal stress. A superficial fibre cell-wall layer (primary cell-wall) is observed at different scales, which highlights the contribution of the global structure of flax fibres to the shear properties of biocomposites.  相似文献   
10.
In preparing polymer–matrix composites, natural fibers are widely used as “reinforcing agents” because of their biodegradable characteristic. In present research, coir fiber reinforced polypropylene biocomposites were manufactured using hot press method. In order to increase the compatibility between the coir fiber and polypropylene matrix, raw coir fiber was chemically treated with basic chromium sulfate and sodium bicarbonate salt in acidic media. Both raw and treated coir at different fiber loading (10, 15 and 20 wt%) were utilized during composite manufacturing. During chemical treatment, hydrophilic –OH groups in the raw coir cellulose were converted to hydrophobic –OH−Cr groups. Microstructural analysis and mechanical tests were conducted. Scanning electron microscopic analysis indicates improvement in interfacial adhesion between the coir and polypropylene matrix upon treatment. Chemically treated specimens yielded the best set of mechanical properties. On the basis of fiber loading, 20% fiber reinforced composites had the optimum set of mechanical properties among all composites manufactured.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号